DOI QR코드

DOI QR Code

Optimizing asset management for Structure System Components of RSG-GAS: A reliability-centric approach

  • Entin Hartini (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Sigit Santoso (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Deswandri Deswandri (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Sriyono (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Veronica Indriati Sri Wardhani (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Endiah Puji Hastuti (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Djati Hoesen Salimy (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Damianus Toersiwi Sony Tjahyani (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Ignatius Djoko Irianto (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Sanda (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN)) ;
  • Farisy Yogatama Sulistyo (Research Center for Nuclear Reactor Technology (PRTRN), Research Organization for Nuclear Energy (ORTN), National Research and Innovation Agency (BRIN))
  • Received : 2024.02.03
  • Accepted : 2024.06.30
  • Published : 2024.11.25

Abstract

This study focuses on the Structure, System, and Components (SSC) of G.A Siwabessy Multipurpose Reactor (RSG-GAS), emphasizing the integration of reliability improvement within asset management optimization. The research aims to derive Maintenance Priority Index (MPI) values, contributing to system reliability ratings, crucial for assessing component functionality and estimating Remaining Useful Life (RUL) The methodology involves measuring critical aspects of system quality, safety, and cost. The MPI value, representing 10 % of SSC critical components, guides subsequent reliability calculations. Utilizing failure data from RSG-GAS components (2010-2018) and reactor core configurations (70th-96th core), SSC reliability is simulated using Monte Carlo simulation, with RUL based on real data. High MPI values are identified for critical components such as KBE01/AP01-02_B in the primary purification system, JE-01/AP01-02_A in the primary cooling system, and PA01-02/CR001_A in the secondary cooling system. Maintenance intervals of 100 days are recommended for KBE01/AP 01-02_B and JE-01/AP01-02_A, exceeding 50 % reliability, while PA01-02/CR001_A maintenance can extend to 75 days. Monte Carlo simulation results, with 1000 samples, closely align with real reliability values. The RUL result projects operational lifetimes of 225.6, 221.4, and 171.5 days for KBE01/AP 01-02_B, JE-01/AP01-02_A, and PA01-02/CR001_A components. This study improves asset management, offering practical insights for critical safety system component maintenance planning.

Keywords

References

  1. E. Soares, I. da Silva Lopes, J. Pinheiro, Methodology to support maintenance management for the identification and analysis of the degradation of equipment reliability, in: IFAC-PapersOnLine, Elsevier B.V., 2021, pp. 1272-1277, https://doi.org/10.1016/j.ifacol.2021.08.153.
  2. I. Marton, A.I. Sanchez, S. Carlos, R. Mullor, S. Martorell, Prognosis of wear-out effect on of safety equipment reliability for nuclear power plants long-term safe operation, Reliab. Eng. Syst. Saf. 233 (2023), https://doi.org/10.1016/j.ress.2023.109121.
  3. International Atomic Energy Agency, Periodic Safety Review for Research Reactor, 2020. https://www.iaea.org/resources/safety-standards.
  4. P. Munyensanga, S.A. Widyanto, M.N.A. Aziz, Paryanto Rusnaldy, Information management to improve the effectiveness of preventive maintenance activities with computerized maintenance management system at the intake system of circulating water pump, in: Procedia CIRP, Elsevier B.V., 2018, pp. 289-294, https://doi.org/10.1016/j.procir.2018.09.044.
  5. M. Jasiulewicz-Kaczmarek, A. Gola, Maintenance 4.0 Technologies for Sustainable manufacturing - an overview, in: IFAC-PapersOnLine, Elsevier B.V., 2019, pp. 91-96, https://doi.org/10.1016/j.ifacol.2019.10.005.
  6. A.A. Daya, I. Lazakis, Developing an advanced reliability analysis framework for marine systems operations and maintenance, Ocean Eng. 272 (2023), https://doi.org/10.1016/j.oceaneng.2023.113766.
  7. N. Shannon, A. Trubetskaya, J. Iqbal, O. McDermott, A total productive maintenance & reliability framework for an active pharmaceutical ingredient plant utilising design for Lean Six Sigma, Heliyon 9 (2023) e20516, https://doi.org/10.1016/j.heliyon.2023.e20516.
  8. D. Macorig, C. Ristori, P. Fiore, V. Bertoli, Road maintenance: which future?, in: Transportation Research Procedia Elsevier B.V., 2023, pp. 687-694, https://doi.org/10.1016/j.trpro.2023.02.224.
  9. A.S. Onawumi, A. Aremu, O.A. Ajiboso, O.O. Agboola, T.M.A. Olayanju, C. O. Osueke, Development of strategic maintenance prediction model for critical equipment maintenance, in: Mater Today Proc, Elsevier Ltd, 2021, pp. 2820-2827, https://doi.org/10.1016/j.matpr.2020.12.1163.
  10. J. Friederich, S. Lazarova-Molnar, Reliability assessment of manufacturing systems: a comprehensive overview, challenges and opportunities, J. Manuf. Syst. 72 (2024) 38-58, https://doi.org/10.1016/j.jmsy.2023.11.001.
  11. T. Santos, F.J.G. Silva, S.F. Ramos, R.D.S.G. Campilho, L.P. Ferreira, Asset priority setting for maintenance management in the food industry, in: Procedia Manuf, Elsevier B.V., 2019, pp. 1623-1633, https://doi.org/10.1016/j.promfg.2020.01.122.
  12. M.L. Rebaiaia, D. Ait-Kadi, A new integrated strategy for optimizing the maintenance cost of Production systems using reliability importance measures, in: IFAC-PapersOnLine, Elsevier B.V., 2022, pp. 1569-1575, https://doi.org/10.1016/j.ifacol.2022.09.614.
  13. D.M. Mohamed Mansour, I.M. Moustafa, A.H. Khalil, H.A. Mahdi, An assessment model for identifying maintenance priorities strategy for bridges, Ain Shams Eng. J. 10 (2019) 695-704, https://doi.org/10.1016/j.asej.2019.06.003.
  14. M. Leimeister, A. Kolios, Reliability-based design optimization of a spar-type floating offshore wind turbine support structure, Reliab. Eng. Syst. Saf. 213 (2021), https://doi.org/10.1016/j.ress.2021.107666.
  15. H.H. Chin, P.S. Varbanov, J.J. Klemes, M.F.D. Benjamin, R.R. Tan, Asset maintenance optimisation approaches in the chemical and process industries - a review, Chem. Eng. Res. Des. 164 (2020) 162-194, https://doi.org/10.1016/j.cherd.2020.09.034.
  16. M. Jirgl, Z. Bradac, K. Stibor, M. Havlikova, Reliability analysis of systems with a complex structure using Monte Carlo approach, IFAC Proc. Vol. 46 (2013) 461-466, https://doi.org/10.3182/20130925-3-CZ-3023.00031.
  17. A.M. Leite da Silva, L.F. Araujo, J.G. de C․ Costa, Reliability evaluation of generating systems considering aging processes, Elec. Power Syst. Res. 202 (2022) 107589, https://doi.org/10.1016/j.epsr.2021.107589.
  18. M. Ramakrishnan, Integration of functional reliability analysis and system hardware reliability through Monte Carlo simulation, Ann. Nucl. Energy 95 (2016) 54-63, https://doi.org/10.1016/j.anucene.2016.04.032.
  19. H. Li, C. Guedes Soares, Assessment of failure rates and reliability of floating offshore wind turbines, Reliab. Eng. Syst. Saf. 228 (2022), https://doi.org/10.1016/j.ress.2022.108777.
  20. L. Hong, X. Wang, W. Zhang, Y. Li, R. Zhang, C. Chen, System reliability-based robust design of deep foundation pit considering multiple failure modes, Geosci. Front. 15 (2024), https://doi.org/10.1016/j.gsf.2023.101761.
  21. M. Seghier, B. Keshtegar, J. Correia, A. De Jesus, G. Lesiuk, Structural reliability analysis of Corroded Pipeline made in X60 Steel based on M5 model tree Algorithm and Monte Carlo simulation, in: Procedia Structural Integrity, Elsevier B.V., 2018, pp. 1670-1675, https://doi.org/10.1016/j.prostr.2018.12.349.
  22. Entin Hartini, Heri Adrial, Santosa Pujiarta, Reliability analysis of primary and purification pumps in RSG-GAS using Monte Carlo simulation approach, Tri. Dasa Mega. 21 (2019) 15-22. http://jurnal.batan.go.id/index.php/tridam. https://doi.org/10.17146/tdm.2019.21.1.5311
  23. O. Ozkan, S. Kilic, A Monte Carlo simulation for reliability estimation of logistics and supply chain networks, in: IFAC-PapersOnLine, Elsevier B.V., 2019, pp. 2080-2085, https://doi.org/10.1016/j.ifacol.2019.11.512.
  24. J. Zeng, Y. Cheng, An ensemble learning-based remaining useful life prediction method for aircraft turbine engine, in: IFAC-PapersOnLine, Elsevier B.V., 2020, pp. 48-53, https://doi.org/10.1016/j.ifacol.2020.11.009.
  25. M. Surico, R. Ricatto, A. Merlo, I. Nemeth, A. Sardelis, M. Villoslada, E. Montejo, N. Frenkel, P. Aivaliotis, I.M. de la Pera Celada, J. Sidiropoulos, A. Eytan, A. Papavasileiou, F. Aggogeri, PROGRAMS project approach to maintenance management, in: IFAC-PapersOnLine, Elsevier B.V., 2020, pp. 313-318, https://doi.org/10.1016/j.ifacol.2020.11.050.
  26. R. yi Xu, H. Wang, M. jun Peng, Y. kuo Liu, An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves, Nucl. Eng. Technol. 54 (2022) 2107-2119, https://doi.org/10.1016/j.net.2021.12.001.
  27. F. Wang, X. Liu, C. Liu, H. Li, Q. Han, Remaining useful life prediction method of Rolling Bearings based on Pchip-EEMD-GM(1, 1) model, Shock Vib. 2018 (2018), https://doi.org/10.1155/2018/3013684.
  28. A. Ghomghaleh, R. Khaloukakaie, M. Ataei, A. Barabadi, A.N. Qarahasanlou, O. Rahmani, A.B. Pour, Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model, PLoS One 15 (2020), https://doi.org/10.1371/journal.pone.0236128.
  29. S. Li, H. Zhou, Y. Yan, W. Han, J. Ren, Reliability and sensitivity analysis of loop-designed security and stability control system in interconnected power systems, Global Energy Interco. 5 (2022) 501-511, https://doi.org/10.1016/j.gloei.2022.10.004.
  30. S. Bracke, M. Radetzky, C. Rosebrock, Reliability engineering data analytics as base of operations for maintenance planning: a cutting tool case study, in: IFAC-PapersOnLine, Elsevier B.V., 2021, pp. 1260-1265, https://doi.org/10.1016/j.ifacol.2021.08.151.
  31. T.W. Anderson, Anderson-darling tests of Goodness-of-Fit, in: International Encyclopedia of Statistical Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 52-54, https://doi.org/10.1007/978-3-642-04898-2_118.