DOI QR코드

DOI QR Code

Fabrication of matrix graphite with a high degree of graphitization for spherical fuel elements by using natural microcrystalline graphite fillers

  • Xinlei Cao (College of Materials Science and Engineering, Hunan University) ;
  • Shen Lv (College of Materials Science and Engineering, Hunan University) ;
  • Kun Xu (College of Materials Science and Engineering, Hunan University) ;
  • Xiaohui Wang (Suzhou Xiran Industrial Equipment Co., Ltd.) ;
  • Jingxu Wang (Suzhou Xiran Industrial Equipment Co., Ltd.) ;
  • Bing Liu (Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education) ;
  • Ke Shen (College of Materials Science and Engineering, Hunan University)
  • Received : 2023.05.13
  • Accepted : 2024.06.27
  • Published : 2024.11.25

Abstract

Matrix graphite is used as a structural material, thermal conductor, moderator, and secondary fission product barrier for fuel elements in high-temperature gas-cooled reactors (HTRs). Due to its high graphitization degree and compressibility, natural flake graphite (NFG) is used as the main filler in traditional A3-3 matrix graphite, whereas artificial graphite (AG), with a lower graphitization degree than NFG, serves as an additive for toughness and gas permeability. Matrix graphite could be improved in terms of thermal conductivity, oxidation resistance, and irradiation performance by increasing the degree of graphitization. However, reports on the development of new matrix graphite formulations are scarce. In this study, MG-20 matrix graphite was prepared by mixing 60 wt % NFG, 20 wt% natural microcrystalline graphite (MG), and 20 wt% phenolic resin. Due to the high graphitization degree (higher than AG) and low coefficient of thermal expansion (CTE) of MG, MG-20 exhibited higher thermal conductivity (~6%) and lower CTE (~2.4%) than A3-3. Thus, MG-20 with higher graphitization degree and better thermal properties than A3-3 could improve the performance of HTR fuel elements in the future.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (52172043).

References

  1. D.A. Petti, J. Buongiorno, J.T. Maki, et al., Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance, Nucl. Eng. Des. 222 (2-3) (2003) 281-297, https://doi.org/10.1016/s0029-5493(03)00033-5.
  2. H. Nickel, H. Nabielek, G. Pott, et al., Long time experience with the development of HTR fuel elements in Germany, Nucl. Eng. Des. 217 (1-2) (2002) 141-151, https://doi.org/10.1016/s0029-5493(02)00128-0.
  3. Z.Y. Zhang, Y.J. Dong, F. Li, et al., The Shandong Shidao Bay 200 MW e High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation, Engineering 2 (1) (2016) 112-118, https://doi.org/10.1016/j.Eng.2016.01.020.
  4. H. Hrovat, K.K. Nickel, About development of a matrix - material for production of pressed fuel elements for high-temperature reactors, Reports of the nuclear research facility - Nr (1973) 969.
  5. E. Hoinkis, E. Robens, Surface area and porosity of unmodified graphitic matrices A3-27 and A3-3 (1950) and oxidized matrix A3-3 (1950), Carbon 27 (1989) 157-168, https://doi.org/10.1016/0008-6223(89)90169-3.
  6. H.S. Zhao, T.X. Liang, J. Zhang, et al., Manufacture and characteristics of spherical fuel elements for the HTR-10, Nucl. Eng. Des. 236 (5-6) (2006) 643-647, https://doi.org/10.1016/j.nucengdes.2005.10.023.
  7. Y.-W. Lee, S. Yeo, E.-S. Kim, et al., On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation, Transactions of the Korean Nuclear Society Autumn Meeting, Korea (2016).
  8. E. Lopez-Honorato, J. Boshoven, P.J. Meadows, et al., Characterisation of the anisotropy of pyrolytic carbon coatings and the graphite matrix in fuel compacts by two modulator generalised ellipsometry and selected area electron diffraction, Carbon 50 (2) (2012) 680-688, https://doi.org/10.1016/j.carbon.2011.09.027.
  9. X.W. Zhou, Z.M. Lu, X.N. Li, et al., The oxidation behavior of A3-3 matrix graphite, N. Carbon Mater. 31 (2) (2016) 182-187, https://doi.org/10.1016/s1872-5805(16)60010-0.
  10. K. Shen, J. Su, H. Zhou, et al., Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR, Nucl. Eng. Des. 293 (2015) 395-402, https://doi.org/10.1016/j.nucengdes.2015.07.051.
  11. K. Shen, W. Peng, B. Liu, et al., Characterization of graphite dust produced by pneumatic lift, Nucl. Eng. Des. 305 (2016) 104-109, https://doi.org/10.1016/j.nucengdes.2016.04.036.
  12. A.W. Mehner, W. Heit, K. Rollig, et al., Spherical fuel elements for advanced HTR manufacture and qualification by irradiation testing, J. Nucl. Mater. 171 (1) (1990) 9-18, https://doi.org/10.1016/0022-3115(90)90341-j.
  13. P.J. Pappano, T.D. Burchell, J.D. Hunn, et al., A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP), J. Nucl. Mater. 381 (1-2) (2008) 25-38, https://doi.org/10.1016/j.jnucmat.2008.07.032.
  14. R.E. Schulze, H.A. Schulze, W. Rind, Graphitische Matrixwerkstoffe Fuer Kugelfoermige HTR-Brennelemente, 1981. Juel-1752.
  15. X.W. Zhou, Z.M. Lu, J. Zhang, Preparation of spherical fuel elements for HTR-PM in INET, Nucl. Eng. Des. 263 (2013) 456-461, https://doi.org/10.1016/j.nucengdes.2013.07.001.
  16. X.W. Zhou, J. Zhang, Z.M. Lu, et al., Study on the carbonization process in the fabrication of pebble fuel elements, Nucl. Eng. Des. 271 (2014) 149-153, https://doi.org/10.1016/j.nucengdes.2013.11.023.
  17. Z. Lu, X. Gao, W. Zhang, et al., Effect of soft-mould pressing method on anisotropy of the graphitic matrix spheres: Dry-bag isostatic vs. Quasi-isostatic, J. Nucl. Mater. 570 (2022), https://doi.org/10.1016/j.jnucmat.2022.153950.
  18. X. Zhou, Y. Yang, J. Ma, et al., Effects of purification on the properties and microstructures of natural flake and artificial graphite powders, Nucl. Eng. Des. (2020) 360, https://doi.org/10.1016/j.nucengdes.2020.110527.
  19. K. Shen, Z.H. Huang, K.X. Hu, et al., Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation, Carbon 90 (2015) 197-206, https://doi.org/10.1016/j.carbon.2015.03.068.
  20. K. Shen, X.T. Chen, W.C. Shen, et al., Thermal and gas purification of natural graphite for nuclear applications, Carbon 173 (2021) 769-781, https://doi.org/10.1016/j.carbon.2020.11.062.
  21. C. Tang, Y. Tang, J. Zhu, et al., Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor, Nucl. Eng. Des. 218 (1-3) (2002) 91-102, https://doi.org/10.1016/s0029-5493(02)00201-7.
  22. X.W. Zhou, K.H. Zhang, Y. Yang, et al., Properties and microstructures of a matrix graphite for fuel elements of pebble-bed reactors after hightemperature purification at different temperatures, N. Carbon Mater. 36 (5) (2021) 987-993, https://doi.org/10.1016/s1872-5805(21)60048-3.
  23. N. Iwashita, C.R. Park, H. Fujimoto, et al., Specification for a standard procedure of X-ray diffraction measurements on carbon materials, Carbon 42 (4) (2004) 701-714, https://doi.org/10.1016/j.carbon.2004.02.008.
  24. K. Shen, K. Xu, S.Y. Yu, et al., The optical texture of PGA, Gilsocarbon, NBG-18, and IG-110 nuclear graphite, J. Nucl. Mater. 552 (2021), https://doi.org/10.1016/j.jnucmat.2021.153013.
  25. R.M. Paul, J.D. Arregui-Mena, C.I. Contescu, et al., Effect of microstructure and temperature on nuclear graphite oxidation using the 3D Random Pore Model, Carbon 191 (2022) 132-145, https://doi.org/10.1016/j.carbon.2022.01.041.
  26. M. Jiang, A. El-Turke, G. Lolov, et al., Multiple length-scale microstructural characterisation of four grades of fine-grained graphite, J. Nucl. Mater. 550 (2021), https://doi.org/10.1016/j.jnucmat.2021.152876.
  27. ASTM, ASTM E1461-2013 Standard Test Method for Thermal Diffusivity by the Flash Method, 2013.
  28. ASTM, ASTM E831-19 Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis, 2019.
  29. ASTM, ASTM D7219-08 Standard Specification for Isotropic and Near-Isotropic Nuclear Graphites, 2008.
  30. K. Shen, X.L. Cao, Z.H. Huang, et al., Microstructure and thermal expansion behavior of natural microcrystalline graphite, Carbon 177 (2021) 90-96, https://doi.org/10.1016/j.carbon.2021.02.055.
  31. Z. He, H. Zhao, J. Song, et al., Densification of matrix graphite for spherical fuel elements used in molten salt reactor via addition of green pitch coke, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2021.09.034.
  32. X. Zhou, Z. Lu, J. Zhang, et al., Study on the comprehensive properties and microstructures of A3-3 matrix graphite related to the high temperature purification treatment, Science and Technology of Nuclear Installations 1-10 (2018) (2018), https://doi.org/10.1155/2018/6084747.