DOI QR코드

DOI QR Code

Assessing the impact of DIONISIO-SubChanFlow code coupling in nuclear fuel performance simulations

  • Received : 2024.03.26
  • Accepted : 2024.06.27
  • Published : 2024.11.25

Abstract

Realistic simulation of nuclear fuel performance requires not only validated models capable of describing the thermomechanical phenomena that take place within the fuel under irradiation conditions, but a detailed description of the thermal hydraulics of the channel surrounding the fuel rods, which provides the boundary conditions of the system. In this work, the main results and outlooks of coupling the thermal hydraulics code SubChanFlow with the fuel performance code DIONISIO are presented. To achieve this, an internal coupling was implemented, wherein DIONISIO is used as a master code controlling SubChanFlow as a thermal hydraulics subroutine replacing the simplified version already embedded in DIONISIO. Several tests were conducted to ensure the performance and quality of the coupling under normal operation conditions as a first approach. In addition, it was observed that the coupling demonstrated a significant improvement in the description of the cladding temperature and related variables, such as oxide thickness and hydrogen uptake, when compared with experimental data.

Keywords

Acknowledgement

This work was supported by the Strategic Partnership UNSAM-KIT (SPUK) and partially by the Agencia Nacional de Promocion de la Investigacion, el Desarrollo Tecnologico y la Innovacion, Argentina (PICT-2018-01568).

References

  1. A. Soba, M. Lemes, M.E. Gonzalez, A. Denis, L. Romero, Simulation of the behavior of nuclear fuel under high burnup conditions, Ann. Nucl. Energy 70 (2014) 147-156, http://dx.doi.org/10.1016/j.anucene.2014.03.004.
  2. A. Soba, A. Denis, DIONISIO 2.0: New version of the code for simulating a whole nuclear fuel rod under extended irradiation, Nucl. Eng. Des. 292 (2015) 213-221, http://dx.doi.org/10.1016/j.nucengdes.2015.06.008.
  3. M. Lemes, A. Soba, H. Daverio, A. Denis, Inclusion of models to describe severe accident conditions in the fuel simulation code DIONISIO, Nucl. Eng. Des. 315 (2017) 1-10, http://dx.doi.org/10.1016/j.nucengdes.2017.02.015.
  4. E. Goldberg, M.E. Loza, A. Soba, DIONISIO 3.0: Comprehensive 3D nuclear fuel simulation through PCMI cohesive and PLENUM models, J. Nucl. Mater. 523 (2019) 121-134, http://dx.doi.org/10.1016/j.jnucmat.2019.06.005.
  5. R.H. Pletcher, J.C. Tannehill, D.A. Anderson, Computational fluid mechanics and heat transfer, Taylor & Francis, 2013.
  6. L.S. Tong, Y.S. Tang, Boiling Heat Transfer and Two-Phase Flow, Taylor & Francis, 1997.
  7. A. Soba, A. Denis, Simulation with DIONISIO 1.0 of thermal and mechanical pellet-cladding interaction in nuclear fuel rods, J. Nucl. Mater. 374 (2008) 32-43, http://dx.doi.org/10.1016/j.jnucmat.2007.06.020.
  8. M. Lemes, A. Soba, A. Denis, An empirical formulation to describe the evolution of the high burnup structure, J. Nucl. Mater. 456 (2015) 174-181, http://dx.doi.org/10.1016/j.jnucmat.2014.09.048.
  9. A. Soba, Simulacion del comportamiento mecanico de una barra combustible en operacion (Ph.D. thesis), Universidad Nacional de Buenos Aires, 2007.
  10. L.S. Tong, J. Weisman, Thermal Analysis of Pressurized Water Reactors, American nuclear society, 1996.
  11. D.L. Hagrman, G.A. Reyman, MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, NUREG/CR-0497,TREE-1280, 1979, http://dx.doi.org/10.2172/6442256, URL https://www.osti.gov/biblio/6442256.
  12. A. Soba, A. Denis, L. Romero, E. Villarino, F. Sardella, A high burnup model developed for the DIONISIO code, J. Nucl. Mater. 433 (2013) 160-166, http://dx.doi.org/10.1016/j.jnucmat.2012.08.016.
  13. A. Gomez Torres, V. Sanchez Espinoza, U. Imke, R. Macian Juan, Pin level neutronic - thermalhydraulic two-way-coupling using DYN3D-SP3 and SubChanFlow, in: International Conference on Mathematics and Computational Methods Applied To Nuclear Science and Engineering, M&C 2011, Rio de Janeiro, RJ, Brazil, 2011, p. 20.
  14. J.C. Almichi, V.H. Sanchez, U. Imke, Extension and validation of the SubChanFlow code for the thermo-hydraulic analysis of MTR cores with plate-type fuel assemblies, Nucl. Eng. Des. 379 (2021) 111221, http://dx.doi.org/10.1016/j.anucene.2014.02.028.
  15. M. Garcia, Y. Bilodid, J. Basualdo Perello, R. Tuominen, A. Gommlich, J. Leppanen, V. Valtavirta, U. Imke, D. Ferraro, P. Van Uffelen, M. Seidl, V.H. Sanchez, Validation of serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from pre-konvoi PWR reactor, Nucl. Eng. Des. 379 (2021) 111173, http://dx.doi.org/10.1016/j.nucengdes.2021.111173.
  16. U. Imke, V.H. Sanchez, Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests PSBT, Sci. Technol. Nuclear Install. 2012 (2012) 12, http://dx.doi.org/10.1155/2012/465059.
  17. W. Jaeger, J. Perez Manes, U. Imke, J. Jimenez Escalante, V.H. Sanchez, Validation and comparison of two-phase flow modeling capabilities of CFD, sub channel and system codes by means of post-test calculations of BFBT transient tests, Nucl. Eng. Des. 263 (2013) 313-326, http://dx.doi.org/10.1016/j.nucengdes.2013.06.002.
  18. M. Calleja, U. Jimenez, V.H. Sanchez, R. Stieglitz, J.J. Herrero, R. Macian, Implementation of hybrid simulation schemes in COBAYA3/SUBCHANFLOW coupled codes for the efficient direct prediction of local safety parameters, Ann. Nucl. Energy 70 (2014) 216-229, http://dx.doi.org/10.1016/j.net.2021.04.023.
  19. M. Daeubler, A. Ivanov, B.L. Sjenitzer, V. Sanchez, R. Stieglitz, R. Macian-Juan, High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent2 - SubChanFlow, Ann. Nucl. Energy 83 (2015) 352-375, http://dx.doi.org/10.1016/j.anucene.2015.03.040.
  20. M. Garcia, R. Vocka, R. Tuominen, A. Gommlich, J. Leppanen, V. Valtavirta, U. Imke, D. Ferraro, P. Van Uffelen, L. Milisdorfer, V.H. Sanchez, Validation of Serpent-SubChanflow-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelin II VVER-1000 reactor, Nuclear Eng. Technol. 53 (2021) 3133-3150, http://dx.doi.org/10.1016/j.net.2021.04.023.
  21. W.F. Lyon, J. Turnbull, IFPE/US-PWR-16 X 16 Lead Test Assembly Extended Burnup Demonstration Program, Nuclear Energy Agency of the OECD (NEA), 2005.
  22. K.J. Geelhood, W.G. Luscher, P.A. Raynaud, I.E. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, Pacific Northwest National Laboratory, Richland, Washington, USA, 2015.
  23. V. Krasnorutskyy, O. Slyeptson, Fuel Rod Performance Evaluation of CE 16x16 LTA Operated at Steady State using TRANSURANUS and PAD Codes, Technical Report, National Science Center "Kharkov Institute of Physics and Technology", 2009.
  24. M. Menard, Rapport d'Assurance Qualite Crayon FF06E2BV/G07/1067, Nuclear Energy Agency of the OECD (NEA), 1998.
  25. M. Menard, Rapport d'Assurance Qualite Crayon FF0EFELX/H09/5007, Nuclear Energy Agency of the OECD (NEA), 1998.