Acknowledgement
This work was supported by the Strategic Partnership UNSAM-KIT (SPUK) and partially by the Agencia Nacional de Promocion de la Investigacion, el Desarrollo Tecnologico y la Innovacion, Argentina (PICT-2018-01568).
References
- A. Soba, M. Lemes, M.E. Gonzalez, A. Denis, L. Romero, Simulation of the behavior of nuclear fuel under high burnup conditions, Ann. Nucl. Energy 70 (2014) 147-156, http://dx.doi.org/10.1016/j.anucene.2014.03.004.
- A. Soba, A. Denis, DIONISIO 2.0: New version of the code for simulating a whole nuclear fuel rod under extended irradiation, Nucl. Eng. Des. 292 (2015) 213-221, http://dx.doi.org/10.1016/j.nucengdes.2015.06.008.
- M. Lemes, A. Soba, H. Daverio, A. Denis, Inclusion of models to describe severe accident conditions in the fuel simulation code DIONISIO, Nucl. Eng. Des. 315 (2017) 1-10, http://dx.doi.org/10.1016/j.nucengdes.2017.02.015.
- E. Goldberg, M.E. Loza, A. Soba, DIONISIO 3.0: Comprehensive 3D nuclear fuel simulation through PCMI cohesive and PLENUM models, J. Nucl. Mater. 523 (2019) 121-134, http://dx.doi.org/10.1016/j.jnucmat.2019.06.005.
- R.H. Pletcher, J.C. Tannehill, D.A. Anderson, Computational fluid mechanics and heat transfer, Taylor & Francis, 2013.
- L.S. Tong, Y.S. Tang, Boiling Heat Transfer and Two-Phase Flow, Taylor & Francis, 1997.
- A. Soba, A. Denis, Simulation with DIONISIO 1.0 of thermal and mechanical pellet-cladding interaction in nuclear fuel rods, J. Nucl. Mater. 374 (2008) 32-43, http://dx.doi.org/10.1016/j.jnucmat.2007.06.020.
- M. Lemes, A. Soba, A. Denis, An empirical formulation to describe the evolution of the high burnup structure, J. Nucl. Mater. 456 (2015) 174-181, http://dx.doi.org/10.1016/j.jnucmat.2014.09.048.
- A. Soba, Simulacion del comportamiento mecanico de una barra combustible en operacion (Ph.D. thesis), Universidad Nacional de Buenos Aires, 2007.
- L.S. Tong, J. Weisman, Thermal Analysis of Pressurized Water Reactors, American nuclear society, 1996.
- D.L. Hagrman, G.A. Reyman, MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, NUREG/CR-0497,TREE-1280, 1979, http://dx.doi.org/10.2172/6442256, URL https://www.osti.gov/biblio/6442256.
- A. Soba, A. Denis, L. Romero, E. Villarino, F. Sardella, A high burnup model developed for the DIONISIO code, J. Nucl. Mater. 433 (2013) 160-166, http://dx.doi.org/10.1016/j.jnucmat.2012.08.016.
- A. Gomez Torres, V. Sanchez Espinoza, U. Imke, R. Macian Juan, Pin level neutronic - thermalhydraulic two-way-coupling using DYN3D-SP3 and SubChanFlow, in: International Conference on Mathematics and Computational Methods Applied To Nuclear Science and Engineering, M&C 2011, Rio de Janeiro, RJ, Brazil, 2011, p. 20.
- J.C. Almichi, V.H. Sanchez, U. Imke, Extension and validation of the SubChanFlow code for the thermo-hydraulic analysis of MTR cores with plate-type fuel assemblies, Nucl. Eng. Des. 379 (2021) 111221, http://dx.doi.org/10.1016/j.anucene.2014.02.028.
- M. Garcia, Y. Bilodid, J. Basualdo Perello, R. Tuominen, A. Gommlich, J. Leppanen, V. Valtavirta, U. Imke, D. Ferraro, P. Van Uffelen, M. Seidl, V.H. Sanchez, Validation of serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from pre-konvoi PWR reactor, Nucl. Eng. Des. 379 (2021) 111173, http://dx.doi.org/10.1016/j.nucengdes.2021.111173.
- U. Imke, V.H. Sanchez, Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests PSBT, Sci. Technol. Nuclear Install. 2012 (2012) 12, http://dx.doi.org/10.1155/2012/465059.
- W. Jaeger, J. Perez Manes, U. Imke, J. Jimenez Escalante, V.H. Sanchez, Validation and comparison of two-phase flow modeling capabilities of CFD, sub channel and system codes by means of post-test calculations of BFBT transient tests, Nucl. Eng. Des. 263 (2013) 313-326, http://dx.doi.org/10.1016/j.nucengdes.2013.06.002.
- M. Calleja, U. Jimenez, V.H. Sanchez, R. Stieglitz, J.J. Herrero, R. Macian, Implementation of hybrid simulation schemes in COBAYA3/SUBCHANFLOW coupled codes for the efficient direct prediction of local safety parameters, Ann. Nucl. Energy 70 (2014) 216-229, http://dx.doi.org/10.1016/j.net.2021.04.023.
- M. Daeubler, A. Ivanov, B.L. Sjenitzer, V. Sanchez, R. Stieglitz, R. Macian-Juan, High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent2 - SubChanFlow, Ann. Nucl. Energy 83 (2015) 352-375, http://dx.doi.org/10.1016/j.anucene.2015.03.040.
- M. Garcia, R. Vocka, R. Tuominen, A. Gommlich, J. Leppanen, V. Valtavirta, U. Imke, D. Ferraro, P. Van Uffelen, L. Milisdorfer, V.H. Sanchez, Validation of Serpent-SubChanflow-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelin II VVER-1000 reactor, Nuclear Eng. Technol. 53 (2021) 3133-3150, http://dx.doi.org/10.1016/j.net.2021.04.023.
- W.F. Lyon, J. Turnbull, IFPE/US-PWR-16 X 16 Lead Test Assembly Extended Burnup Demonstration Program, Nuclear Energy Agency of the OECD (NEA), 2005.
- K.J. Geelhood, W.G. Luscher, P.A. Raynaud, I.E. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, Pacific Northwest National Laboratory, Richland, Washington, USA, 2015.
- V. Krasnorutskyy, O. Slyeptson, Fuel Rod Performance Evaluation of CE 16x16 LTA Operated at Steady State using TRANSURANUS and PAD Codes, Technical Report, National Science Center "Kharkov Institute of Physics and Technology", 2009.
- M. Menard, Rapport d'Assurance Qualite Crayon FF06E2BV/G07/1067, Nuclear Energy Agency of the OECD (NEA), 1998.
- M. Menard, Rapport d'Assurance Qualite Crayon FF0EFELX/H09/5007, Nuclear Energy Agency of the OECD (NEA), 1998.