DOI QR코드

DOI QR Code

Research on a novel γ-ray spectrum analysis method for low- and intermediate-level radioactive solid waste in nuclear power plants

  • Xiangming Cai (School of Nuclear Science and Technology, University of South China) ;
  • Hui Yang (School of Nuclear Science and Technology, University of South China) ;
  • Xiyu Yang (School of Nuclear Science and Technology, University of South China) ;
  • Yixin He (School of Nuclear Science and Technology, University of South China) ;
  • Jian Shan (School of Nuclear Science and Technology, University of South China)
  • 투고 : 2023.10.08
  • 심사 : 2024.06.18
  • 발행 : 2024.11.25

초록

Accurate nuclide identification in γ-spectrum analysis of low- and intermediate-level radioactive waste with high-purity germanium detectors necessitates initial forced fitting with a nuclide library, yet inaccuracies in library data may lead to misidentification and missing nuclides. To this end, background clipping strategies were hereby analyzed, and a novel deconvolution spectrum analysis method was proposed, which utilized continuous wavelet transform for peak searching and Gaussian first-order derivative quadratic convolution for calculating peak width. Furthermore, to effectively realize the nuclide identification and peak area calculation, a response filter function model was established through the peak shape calibration. By eliminating the need for nuclide library parameter settings prior to overlapping peak separation, the issue of inaccurate matching arising from reliance on the precision of the nuclide library was addressed. Moreover, spectrum analysis experiments were carried out on standard point sources and 200 L drums, and the results were compared and analyzed using GammaVision. Compared to the GammaVision results set by the accurate nuclide library, the area error of strong peaks decreased from 27.5 % to 4.82 %, while that of weak peaks witnessed a decline from 49.98 % to 27.5 %. Finally, the accuracy of the proposed method was verified using the Pakistan Nuclear Library.

키워드

과제정보

The authors have to sincerely extend their thanks for the financial support provided for project number 12075112 by the National Natural Science Foundation of China, for project number 2023JJ50121 by the National Natural Science Foundation of Hunan Province, and for project number 23B0421 by the Hunan Education Department project.

참고문헌

  1. Interim storage of radioactive waste packages, in: Internationale Atomenergie-Organisation (Ed.), Technical Reports Series/International Atomic Energy Agency, IAEA, Vienna, 1998, p. 390.
  2. H. Yang, et al., Transmission reconstruction algorithm by combining maximum-likelihood expectation maximization and a convolutional neural network for radioactive drum characterization, Appl. Radiat. Isot. 184 (Jun. 2022) 110172, https://doi.org/10.1016/j.apradiso.2022.110172.
  3. Classification of radioactive waste, in: General Safety Guides, No. GSG-1, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2009 [Online]. Available: https://www.iaea.org/publications/8154/classification-of-radioactive-waste.
  4. J. S. Hansen, "Application Guide to Tomographic Gamma Scanning of Uranium and Plutonium," p. 57.
  5. C26 Committee, "Test Method for Nondestructive Assay of Special Nuclear Material in Low-Density Scrap and Waste by Segmented Passive Gamma-Ray Scanning," ASTM International. doi: 10.1520/C1133_C1133M-10R18.
  6. C26 Committee, "Nondestructive Assay of Radioactive Material by Tomographic Gamma Scanning.".
  7. C26 Committee, "Terminology of C26.10 Nondestructive Assay Methods," ASTM International. doi: 10.1520/C1673-10AR18.
  8. Mona M. Gouda, et al., Calibration of well-type NaI(Tl) detector using a point sources measured out the detector well at different axial distances, J. Instrum. 10 (2015) P03022. P03022.
  9. Ahmed M. El-Khatib, Mona M. Gouda, Mohamed S. Badawi, Sherif S. Nafee, Ekram A. El-Mallah, New analytical approach to calibrate the NaI (Tl) detectors using spherical radioactive sources, Radiat. Protect. Dosim. 156 (1) (August 2013) 109-117. https://doi.org/10.1093/rpd/nct048
  10. Mohamed Badawi, Slobodan Jovanovic, Thabet, et al., Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software, AIP Adv. 7 (2017) 035005.
  11. Ahmed M. El-Khatib, Mohamed S. Badawi, Abouzeid A. Thabet, et al., Abbas,Well-type NaI(Tl) detector efficiency using analytical technique and ANGLE 4 software based on radioactive point sources located out the well cavity, Chin. J. Phys. 54 (3) (2016) 338-346. https://doi.org/10.1016/j.cjph.2016.03.019
  12. J. L. Parker, "The Use of Calibration Standards and the Correction for Sample Self-Attenuation in Gamma-Ray Nondestructive Assay," p. 35.
  13. "EN ISO 19017, Guidance for gamma spectrometry measurement of radioactive waste (ISO 19017:2015)," [Online]. Available, iTeh Standards Store, 2017, https://standards.iteh.ai/catalog/standards/cen/7c0d6eef-900c-4b86-b33c-6e586f3dbaec/en-iso-19017-2017. (Accessed 6 December 2022).
  14. H. Yang, et al., A novel method for gamma spectrum analysis of low-level and intermediate-level radioactive waste, Nucl. Sci. Tech. 34 (6) (Jun. 2023) 87, https://doi.org/10.1007/s41365-023-01236-w.
  15. H. Yang, X. Zhang, W. Gu, G. Huang, W. Zhou, D. Wang, Research on the CdZnTe γ spectrum analysis based on an intelligent dynamic library, J. Radioanal. Nucl. Chem. (Mar. 2023), https://doi.org/10.1007/s10967-023-08858-9.
  16. S.J. Bell, P. Aitken-Smith, S. Beeke, S.M. Collins, P.H. Regan, R. Shearman, A comparison of emerging gamma detector technologies for airborne radiation monitoring, J. Phys.: Conf. Ser. 763 (Oct. 2016) 012010, https://doi.org/10.1088/1742-6596/763/1/012010.
  17. D.N. Grozdanov, et al., Semi-empirical gamma-ray response function of BGO, NaI (Tl) and LaBr 3 (Ce) scintillation detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1014 (Oct. 2021) 165741, https://doi.org/10.1016/j.nima.2021.165741.
  18. Mona M. Gouda, et al., Mathematical method to calculate full-energy peak efficiency of detectors based on transfer technique, Indian J. Phys. 90 (2016) 201-210. https://doi.org/10.1007/s12648-015-0737-1
  19. Mohamed S. Badawi, et al., New numerical simulation approach to calibrate the NaI(Tl) detectors array using non-axial extended spherical sources, J. Instrum. 8 (2013) 11005.
  20. Abouzeid Thabet, Aleksandar Dlabac, et al., Experimental verification of gamma-efficiency calculations for scintillation detectors in ANGLE 4 software, Nucl. Technol. Radiat. Protect. 30 (2015) 35-46. https://doi.org/10.2298/NTRP1501035T
  21. M.S. Badawi, S. Noureddine, et al., Characterization of the efficiency of a cubic NaI detector with rectangular cavity for axially positioned sources, J. Instrum. 15 (2) (2020) P02013.
  22. Mohamed Badawi, A numerical simulation method for calculation of linear attenuation coefficients of unidentified sample materials in routine gamma ray spectrometry, Nucl. Technol. Radiat. Protect. 30 (2015) 249-259. https://doi.org/10.2298/NTRP1504249B
  23. G.F. Knoll, Radiation Detection and Measurement, fourth ed., John Wiley, Hoboken, N.J, 2010.
  24. PART 61-LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE," NRC Web. Accessed: March. 8, 2022. [Online]. Available: https://www.nrc.gov/reading-rm/doc-collections/cfr/part061/full-text.html.
  25. M.A. Mariscotti, A method for automatic identification of peaks in the presence of background and its application to spectrum analysis, Nucl. Instrum. Methods 50 (2) (May 1967) 309-320, https://doi.org/10.1016/0029-554X(67)90058-4.
  26. I.A. Slavi'c, S.P. Bingulac, A simple method for full automatic gamma-ray spectra analysis, Nucl. Instrum. Methods 84 (2) (Jul. 1970) 261-268, https://doi.org/10.1016/0029-554X(70)90270-3.
  27. A. Robertson, W.V. Prestwich, T.J. Kennett, An automatic peak-extraction technique, Nucl. Instrum. Methods 100 (2) (Apr. 1972) 317-324, https://doi.org/10.1016/0029-554X(72)90701-X.
  28. I.A. Slavi'c, Automatic analysis of gamma-ray spectra, Nucl. Instrum. Methods 112 (1-2) (Sep. 1973) 253-260, https://doi.org/10.1016/0029-554X(73)90804-5.
  29. H.P. Blok, J.C. de Lange, J.W. Schotman, A new peak search method for an automatic spectrum analysis program, Nucl. Instrum. Methods 128 (3) (Oct. 1975) 545-556, https://doi.org/10.1016/0029-554X(75)90523-6.
  30. C.J. Sullivan, S.E. Garner, K.B. Butterfield, Wavelet analysis of gamma-ray spectra, in: IEEE Symposium Conference Record Nuclear Science 2004, IEEE, Rome, Italy, 2004, pp. 281-286, https://doi.org/10.1109/NSSMIC.2004.1462198.
  31. S.M. Galib, P.K. Bhowmik, A.V. Avachat, H.K. Lee, A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra, Nucl. Eng. Technol. 53 (12) (Dec. 2021) 4072-4079, https://doi.org/10.1016/j.net.2021.06.020.
  32. C. Teke, I. Akkurt, S. Arslankaya, I. Ekmekci, K. Gunoglu, Prediction of gamma ray spectrum for 22Na source by feed forward back propagation ANN model, Radiat. Phys. Chem. 202 (Jan. 2023) 110558, https://doi.org/10.1016/j.radphyschem.2022.110558.
  33. Miroslav Morhac, Jan Kliman, Vladislav Matousek, Martin Veselsky, Ivan Turzo, Efficient one- and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 401 (2-3) (Dec. 1997) 385-408, https://doi.org/10.1016/S0168-9002(97)01058-9.
  34. IAEA, IAEA Intercomparison of Software Packages, 1998.
  35. Genie 2000 operations manual," p. 387. https://www3.nd.eduwzech/Genie20200020Operations20Manual.pdf.
  36. M. Kashiwagi, et al., ISO standardization of the scaling factor method for low- and intermediate level radioactive wastes generated at nuclear power plants, in: 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B, Bruges, ASMEDC, Belgium, Jan. 2007, pp. 625-629, https://doi.org/10.1115/ICEM2007-7015.
  37. C.G. Ryan, E. Clayton, W.L. Griffin, S.H. Sie, D.R. Cousens, SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 34 (3) (Sep. 1988) 396-402, https://doi.org/10.1016/0168-583X(88)90063-8.
  38. M. Morhac, V. Matousek, Peak clipping algorithms for background estimation in spectroscopic data, Appl. Spectrosc. 62 (1) (Jan. 2008) 91-106, https://doi.org/10.1366/000370208783412762.
  39. P. Bury, et al., Wavelet analysis of X-ray spectroscopic data Part I. The method, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 383 (2-3) (Dec. 1996) 572-588, https://doi.org/10.1016/S0168-9002(96)00721-8.
  40. C.J. Sullivan, M.E. Martinez, S.E. Garner, Wavelet analysis of sodium iodide spectra, in: IEEE Nuclear Science Symposium Conference Record, 2005, Wyndham El Conquistador Resort, IEEE, Puerto Rico, 2005, pp. 302-306, https://doi.org/10.1109/NSSMIC.2005.1596258.
  41. M. Liu, Z. Dong, G. Xin, Y. Sun, R. Qu, An improved method based on a new wavelet transform for overlapped peak detection on spectrum obtained by portable Raman system, Chemometr. Intell. Lab. Syst. 182 (Nov. 2018) 1-8, https://doi.org/10.1016/j.chemolab.2018.08.002.
  42. IEC, IEC 61453:2007 Nuclear instrumentation - scintillation gamma ray detector systems for the assay of radionuclides - calibration androutine testsIEC 61453:2007 | IEC Webstore [Online]. Available: https://webstore.iec.ch/publication/5471. (Accessed 7 December 2022).
  43. M. Morhac, Deconvolution methods and their applications in the analysis of -ray spectra, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 559 (1) (Apr. 2006) 119-123, https://doi.org/10.1016/j.nima.2005.11.129.
  44. Miroslav Morhac, Vladislav Matousek, High-resolution boosted deconvolution of spectroscopic data, J. Comput. Appl. Math. 235 (6) (Jan. 2011) 1629-1640, https://doi.org/10.1016/j.cam.2010.09.005.
  45. H. Yang, W. Gu, X. Zhang, K. Zhang, W. Zhou, D. Wang, Research on the γ spectrum-unfolding method of low- and intermediate-level radioactive waste based on LaBr3(Ce) detector, Radiat. Phys. Chem. (Feb. 2023) 110841, https://doi.org/10.1016/j.radphyschem.2023.110841.