참고문헌
- Alioua, A., Bouchouicha, B., Zemri, M. and Abdellatif, I.M.A.D. (2017), "Fatigue behavior of mechanical structures welded with different filler metal", Adv. Mater. Res., 6(3), 233. https://doi.org/10.12989/amr.2017.6.3.233.
- Arora, A., De, A. and Debroy, T. (2011), "Toward optimum friction stir welding tool shoulder diameter", Scr. Mater., 64(1), 9-12. https://doi.org/10.1016/j.scriptamat.2010.08.052.
- Auwal, S.T., Ramesh, S., Tan, C., Zhang, Z., Zhao, X. and Manladan, S.M. (2019), "Recent developments and challenges in welding of magnesium to titanium alloys", Adv. Mater. Res., 8(1), 47-73. https://doi.org/10.12989/amr.2019.8.1.047.
- Boucherit, A., Avettand-Fenoel, M.N. and Taillard, R. (2017), "Effect of a Zn interlayer on dissimilar FSSW of Al and Cu", Mater. Des., 124, 87-99. https://doi.org/10.1016/j.matdes.2017.03.063.
- Cetkin, E., Celik, Y.H. and Temiz, S. (2019), "Microstructure and mechanical properties of AA7075/AA5182 jointed by FSW", J. Mater. Process. Technol., 268, 107-116. https://doi.org/10.1016/j.jmatprotec.2019.01.005.
- Chinchanikar, S. and Gaikwad, V.S. (2021), "State of the art in friction stir welding and ultrasonic vibration-assisted friction stir welding of similar/dissimilar aluminum alloys", J. Comput. Appl. Res. Mech. Eng., 11(1), 67-100. https://doi.org/10.22061/JCARME.2021.7390.1983.
- Chowdhury, A., Sengupta, K., Maji, K.K., Roy, S. and Ghosal, S. (2021), "Investigation of mechanical properties of dissimilar joint of Al6063 aluminium alloy and C26000 copper alloy by ultrasonic assisted friction stir welding", Mater. Today Proc., 50, 1527-1534. https://doi.org/10.1016/j.matpr.2021.09.103.
- Gaikwad, V.S. and Chinchanikar, S. (2021a), "Mechanical behaviour of friction stir welded AA7075-T651 joints considering the effect of tool geometry and process parameters", Adv. Mater. Proc Technol., 8(4), 3730-3748. https://doi.org/10.1080/2374068X.2021.1976554.
- Gaikwad, V.S. and Chinchanikar, S. (2021b), "Investigation on surface roughness, ultimate tensile strength, and microhardness of friction stir welded AA7075-T651 joint", Mater. Today Proc., 46(17), 8061-8065. https://doi.org/10.1016/j.matpr.2021.03.034.
- Gaikwad, V.S. and Chinchanikar, S.S. (2022a), "Adaptive neuro fuzzy inference system to predict the mechanical properties of friction stir welded AA7075-T651 joints", Jordan J. Mech. Ind. Eng., 16(3), 381-393.
- Gaikwad, V.S. and Chinchanikar, S. (2022b), "Mechanical properties, microstructure, and fracture behavior of friction stir welded AA7075 joints with conical pin and conical threaded pin type tools", Sci. Iranica., 30(1), 1-15. https://doi.org/10.24200/SCI.2022.59154.6087.
- Gao, S., Wu, C.S., Padhy, G.K. and Shi, L. (2016), "Evaluation of local strain distribution in ultrasonic enhanced Al 6061-T6 friction stir weld nugget by EBSD analysis", Mater. Des., 99, 135-144. https://doi.org/10.1016/j.matdes.2016.03.055.
- Gao, S., Wu, C.S. and Padhy, G.K. (2017), "Material flow, microstructure and mechanical properties of friction stir welded AA 2024-T3 enhanced by ultrasonic vibrations", J. Manuf. Proc., 30, 385-395. https://doi.org/10.1016/j.jmapro.2017.10.008.
- Hu, Y., Liu, H. and Du, S. (2021), "Achievement of high-strength 2219 aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding", Mater. Sci. Eng. A, 804, 140587. https://doi.org/10.1016/j.msea.2020.140587.
- Ji, S., Meng, X., Liu, Z., Huang, R. and Li, Z. (2017), "Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic", Mater. Lett., 201, 173-176. https://doi.org/10.1016/j.matlet.2017.05.011.
- Khajeh, R., Jafarian, H.R., Jabraeili, R., Eivani, A.R., Seyedein, S. H., Park, N. and Heidarzadeh, A. (2022), "Strength-ductility synergic enhancement in friction stir welded AA2024 alloy and copper joints: Unravelling the role of Zn interlayer's thickness", J. Mater. Res. Technol., 16, 251-262. https://doi.org/10.1016/j.jmrt.2021.11.133.
- Kuang, B., Shen, Y., Chen, W., Yao, X., Xu, H., Gao, J. and Zhang, J. (2015), "The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with 'pinless' tool configuration", Mater. Des., 68, 54-62. https://doi.org/10.1016/j.matdes.2014.12.008.
- Kumar, S. (2016), "Ultrasonic assisted friction stir processing of 6063 aluminum alloy", Arch. Civ. Mech. Eng., 16(3), 473-484. https://doi.org/10.1016/j.acme.2016.03.002.
- Kumar, S., Wu, C.S., Padhy, G.K. and Ding, W. (2017), "Application of ultrasonic vibrations in welding and metal processing: A status review", J. Manuf. Proc, 26, 295-322. https://doi.org/10.1016/j.jmapro.2017.02.027.
- Kumar, M., Das, A. and Ballav, R. (2019), "Influence of interlayer on microstructure and mechanical properties of friction stir welded dissimilar joints: A review", Mater. Today Proc., 26, 2123-2129. https://doi.org/10.1016/j.matpr.2020.02.458.
- Kumar, S. and Wu, C. (2021), "Eliminating intermetallic compounds via Ni interlayer during friction stir welding of dissimilar Mg/Al alloys", J. Mater. Res. Technol., 15, 4353-4369. https://doi.org/10.1016/j.jmrt.2021.10.065.
- Lei, Z., Bi, J., Li, P., Guo, T., Zhao, Y. and Zhang, D. (2018), "Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy", Opt. Laser Technol., 105, 15-22. https://doi.org/10.1016/j.optlastec.2018.02.050.
- Lenin, W.A., Periyasamy, N. and George, L. (2016), "Influence of interlayer thickness (Zn) on the Properties of Al 7020 FSW Joints", Mater. Res., 19(4), 817-823. https://doi.org/10.1590/1980-5373-MR-2016-0163.
- Liu, X.C. and Wu, C.S. (2013), "Experimental study on ultrasonic vibration enhanced friction stir welding", Proceedings of the 1st International Joint Symposium on Joining and Welding, 151-154, Osaka, Japan, November. https://doi.org/10.1533/978-1-78242-164-1.151.
- Liu, X., Wu, C. and Padhy, G.K. (2015), "Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding", Scr. Mater., 102, 95-98. https://doi.org/10.1016/j.scriptamat.2015.02.022.
- Liu, X.C. and Wu, C.S. (2015), "Material flow in ultrasonic vibration enhanced friction stir welding", J. Mater. Sci. Technol., 225, 32-44. https://doi.org/10.1016/j.jmatprotec.2015.05.020.
- Liu, X.C. and Wu, C.S. (2016), "Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding", Mater. Des. 2016; 90: 350-358. https://doi.org/10.1016/j.matdes.2015.10.131.
- Liu, Z., Meng, X., Ji, S., Li, Z. and Wang, L. (2018), "Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding", J. Manuf. Proc., 31, 552-559. https://doi.org/10.1016/j.jmapro.2017.12.022.
- Liu, H., Zuo, Y., Ji, S., Dong, J. and Zhao, H. (2022), "Friction stir solideliquid spot welding of Cu to Al assisted by Zn interlayer", J. Mater. Res. Technol., 18, 85-95. https://doi.org/10.1016/j.jmrt.2022.02.067.
- Lv, X.Q., Wu, C.S. and Padhy, G.K. (2017), "Diminishing intermetallic compound layer in ultrasonic vibration enhanced friction stir welding of aluminum alloy to magnesium alloy", Mater. Lett., 203, 81-84. https://doi.org/10.1016/j.matlet.2017.05.090.
- Lv, X., Wu, C.S., Yang, C. and Padhy, G.K. (2018), "Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy", J. Mater. Process. Technol., 254, 145-157. https://doi.org/10.1016/j.jmatprotec.2017.11.031.
- Meng, X., Jin, Y., Ji, S. and Yan, D. (2018), "Improving friction stir weldability of Al/Mg alloys via ultrasonically diminishing pin adhesion", J. Mater. Sci. Technol., 34(10), 1817-1822. https://doi.org/10.1016/j.jmst.2018.02.022.
- Mokabberi, S.R., Movahedi, M. and Kokabi, A.H. (2018), "Effect of interlayers on softening of aluminum friction stir welds", Mater. Sci. Eng. A, 727, 1-10. https://doi.org/10.1016/j.msea.2018.04.093.
- Muhammad, N.A. and Wu, C.S. (2019), "Ultrasonic vibration assisted friction stir welding of aluminium alloy and pure copper", J. Manuf. Proc., 39, 114-127. https://doi.org/10.1016/j.jmapro.2019.02.011.
- Muhammad, N.A., Wu, C.S. and Su, H. (2021), "Concurrent influences of tool offset and ultrasonic vibration on the joint quality and performance of dissimilar Al/Cu friction stir welds", J. Mater. Res. Technol., 14, 1035-1051. https://doi.org/10.1016/j.jmrt.2021.07.009.
- Padhy, G.K., Wu, C.S., Gao, S. and Shi, L. (2016a), "Local microstructure evolution in Al 6061-T6 friction stir weld nugget enhanced by ultrasonic vibration", Mater. Des., 92, 710-723. https://doi.org/10.1016/j.matdes.2015.12.094.
- Padhy, G.K., Wu, C.S. and Gao, S. (2016b), "Subgrain formation in ultrasonic enhanced friction stir welding of aluminium alloy", Mater. Lett., 183, 34-39. https://doi.org/10.1016/j.matlet.2016.07.033.
- Salman, S.D. (2022), "The influence of kenaf contents and stacking sequence on drop-weight impact properties of hybrid laminated composites reinforced polyvinyl butyral composites", J. Ind. Text., 51(5), 8645S-8667S. https://doi.org/10.1177/1528083720937388
- Salman, S.D. (2020), "Effects of jute fibre content on the mechanical and dynamic mechanical properties of the composites in structural applications", Def. Technol., 16(6), 1098-1105. https://doi.org/10.1016/j.dt.2019.11.013
- Salman, S.D., Leman, Z., Sultan, M.T.H., Ishak, M.R. and Cardona, F. (2015), "Influence of resin system on the energy absorption capability and morphological properties of plain woven kenaf composites", IOP Conf. Ser. Mater. Sci. Eng., 100(1), 012053. https://doi.org/10.1088/1757-899X/100/1/012053
- Sarkari Khorrami, M., Kazeminezhad, M. and Kokabi, A.H. (2014), "The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum", Mater. Sci. Eng. A., 602, 110-118. https://doi.org/10.1016/j.msea.2014.02.067.
- Shakil, M., Tariq, N.H., Ahmad, M., Choudhary, M.A., Akhter, J.I. and Babu, S.S. (2014), "Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints", Mater. Des., 55, 263-273. https://doi.org/10.1016/j.matdes.2013.09.074.
- Shi, L., Wu, C.S. and Liu, X.C. (2015), "Modeling the effects of ultrasonic vibration on friction stir welding", J. Mater. Process. Technol., 222, 91-102. https://doi.org/10.1016/j.jmatprotec.2015.03.002.
- Shi, L., Wu, C.S., Padhy, G.K. and Gao, S. (2016), "Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding", Mater. Des., 104, 102-115. https://doi.org/10.1016/j.matdes.2016.05.001.
- Siddiq, A. and El Sayed, T. (2011), "Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM", Mater. Lett., 65(2), 356-359. https://doi.org/10.1016/j.matlet.2010.10.031.
- Su, H., Zhao, Q., Chen, J. and Wu, C. (2022), "Homogenizing the intermetallic compounds distribution in Al/Cu dissimilar friction stir welding joint with the assistance of ultrasonic vibration", Mater. Today Commun., 31, 103643. https://doi.org/10.1016/j.mtcomm.2022.103643.
- Thoma, M., Wagner, G., Strass, B., Wolter, B., Benfer, S. and Furbeth, W. (2018), "Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints," J. Mater. Sci. Technol., 34(1), 163-172. https://doi.org/10.1016/j.jmst.2017.10.022.
- Wu, M., Wu, C.S. and Gao, S. (2017), "Effect of ultrasonic vibration on fatigue performance of AA 2024-T3 friction stir weld joints", J. Manuf. Process., 29, 85-95. https://doi.org/10.1016/j.jmapro.2017.07.023.
- Wu, C.S., Wang, T. and Su, H. (2022), "Material flow velocity, strain and strain rate in ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys", J. Manuf. Process., 75, 13-22. https://doi.org/10.1016/j.jmapro.2021.12.055.
- Xu, C., Sheng, G., Cao, X. and Yuan, X. (2016), "Evolution of Microstructure, Mechanical Properties and Corrosion Resistance of Ultrasonic Assisted Welded-Brazed Mg/Ti Joint", J. Mater. Sci. Technol., 32(12), 1253-1259. https://doi.org/10.1016/j.jmst.2016.08.029.
- Yang, C., Wu, C.S. and Shi, L. (2020), "Effect of ultrasonic vibration on dynamic recrystallization in friction stir welding", J. Manuf. Proc., 56, 87-95. https://doi.org/10.1016/j.jmapro.2020.04.064.
- Yao, Z., Kim, G.Y., Faidley, L., Zou, Q., Mei, D. and Chen, Z. (2012), "Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting", J. Mater. Proc. Technol., 212(3), 640-646. https://doi.org/10.1016/j.jmatprotec.2011.10.017.
- Zhang, Z., He, C., Li, Y., Yu, L., Zhao, S. and Zhao, X. (2020), "Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints", J. Mater. Sci. Technol., 43, 1-13. https://doi.org/10.1016/j.jmst.2019.12.007.
- Zhao, W., Wu, C.S. and Su, H. (2020), "Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding", J. Manuf. Proc., 56, 967-980. https://doi.org/10.1016/j.jmapro.2020.05.047.
- Zhao, J., Wu, C.S. and Shi, L. (2022), "Effect of ultrasonic field on microstructure evolution in friction stir welding of dissimilar Al/Mg alloys", J. Mater. Res. Technol., 17, 1-21. https://doi.org/10.1016/j.jmrt.2021.12.133.
- Zhong, Y.B., Wu, C.S. and Padhy, G.K. (2017), "Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding", J. Mater. Proc. Technol., 239, 273-283. https://doi.org/10.1016/j.jmatprotec.2016.08.025.