DOI QR코드

DOI QR Code

A study on computational analysis modeling for evaluating the performance of additive manufacturing specimen

적층제조시편 성능 평가를 위한 전산해석 모델링 도출에 관한 연구

  • Yeo-Ul Song (Dept. of Industrial Machinery DX, Korea Inst. of Machinery & Materials) ;
  • Pil-Ho Lee (Dept. of 3D Printing, Korea Inst. of Machinery & Materials) ;
  • Dong-Woon Shin (Dept. of 3D Printing, Korea Inst. of Machinery & Materials) ;
  • Gyeong-Yun Baek (Dept. of Convergence Mechanical Eng., Gwangju Univ.)
  • 송여울 (한국기계연구원 산업기계DX연구실) ;
  • 이필호 (한국기계연구원 3D프린팅연구실) ;
  • 신동운 (한국기계연구원 3D프린팅연구실) ;
  • 백경윤 (광주대학교 융합기계공학과)
  • Received : 2024.01.09
  • Accepted : 2024.03.31
  • Published : 2024.03.31

Abstract

Additive manufacturing grants control over both the shape and properties of the product. Therefore, validating product operation necessitates predicting its properties. In this study, an optical fiber-based temperature sensor was inserted into an additively manufactured specimen, and the actual temperature was collected. A machine learning model was constructed using the collected temperature data for calibration, enabling accurate prediction of physical properties. These predicted properties were then integrated into structural analysis to assess the performance of the specimen.

Keywords

Acknowledgement

본 연구는 한국기계연구원 기관 기본사업(NK248I)과 한국연구재단의 한·중 산·학·연 대형공동연구(NRF-2022K1A3A1A61015007)의 지원을 받아 연구되었음.

References

  1. T. Lei, J. Alexandersen, B.S. Lazarov, F. Wang, J. H.K. Haertel, S.D. Angelis, S. Sanna, O. Sigmund, K. Engelbrecht, "Investment casting and experimental testing of heat sinks designed by topology optimization", International Journal of Heat and Mass Transfer, Vol. 127, pp.396-412, 2018
  2. Hamdi E. Ahmed, B.H. Salman, A.Sh. Kherbeet, M.I. Ahmed, "Optimization of thermal design of heat sinks: A review", International Journal of Heat and Mass Transfer, Vol. 118, pp.129-153, 2018.
  3. B. Zhang, R. Seede, L. Xue, K.C. Atli, C. Zhang, A. Whitt, I. Karaman, R. Arroyave, A. Elwany, "An efficient framework for printability assessment in Laser Powder Bed Fusion metal additive manufacturing", Additive Manufacturing, Vol.46, 102018, 2021
  4. Z. Li, Z. Zhang, J. Shi, D. Wu, "Prediction of surface roughness in extrusion-based additive manufacturing with machine learning", Robotics and Computer-Integrated Manufacturing, Vol. 57, pp.488-495, 2019
  5. G. Tapia, A.H. Elwany, H. Sang, "Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models", Additive Manufacturing, Vol. 12, pp.282-290, 2016
  6. H. Zhang, J. P. Choi, S. K. Moon, T. H. Ngo, "A multi-objective optimization framework for aerosol jet customized line width printing via small data set and prediction uncertainty", Journal of Materials Processing Technology, Vol. 285, 116779, 2020
  7. M. Mitchell, "An Introduction to Genetic Algorithms", MIT Press, 1998
  8. S. Li, S. Yuan, J. Zhu, C. Wang, J. Li, W. Zhang, "Additive manufacturing-driven design optimization: Building direction and structural topology", Additive Manufacturing, Vol.36, 101406, 2020.
  9. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, "Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review",Materials & Design, Vol. 139, pp. 565-586, 2018.