과제정보
본 연구는 2023년도 산업통상자원부의 소재부품 산업기술개발기반구축사업의 '글로벌 시장 진출을 위한 차세대 자동차용 R100, Ra 200nm급 디지털 라이트닝 초미세 Light Guide 모듈 금형성형기술 개발(No. 20019131, KM230100)' 과제의 지원을 받아 연구되었습니다.
참고문헌
- Kim, S. G., Lee, S. I., Ryu, G. Y., Shin, M. S., "Design of Data Analysis System for Supporting the Collaboration of Mold Manufacturing SMEs", Industrial Engineering & Management Systems, 1889-1895, 2019.
- Lee, J. H., Lee, J. K., Kawk, J. S., "Development and Evaluation of a Non-linearity Predictive Surface Roughness Model for Non-contact Finishing Products", Transactions of the Korean Society of Mechanical Engineers, Vol. 46:9, 835-841, 2022.
- Ryu, S. H., Lee, H. S., Chu, C. N., "Surface Roughness Prediction in Finish Machining with a Flat End Mill", Korean Society for Precision Engineering, 166-171, 1998.
- Chun, S. H., "A Study on the Application of ANN for Surface Roughness Prediction in Side Milling AL6061-T4 by Endmill", Journal of the Korean Society of Manufacturing Process Engineers, Vol. 20:5, 55-60, 2021.
- Oh, S. C., "Prediction of Machining Performance using ANN and Training using ACO", Journal of the Korean Society of Manufacturing Process Engineers, Vol. 16:6, 125-132, 2017.
- Kim, J. W., Lee, D. W., Kim, J. S., Kim, J. S., "A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining", Design & Manufacturing, Vol. 17:4, 1-7, 2023.
- Lee, D. W., Lee, H. H., Kim, J. S., Kim, J. S., "A Study on the Surface Roughness Analysis by Cutting Condition in Machining of STAVAX mold for Vehicle Light Guide", Korean Society of Mechanical Technology, Vol. 24:6, 1106-1112, 2022.
- Lee, D. W., Lee, H. H., Kim, J. S., Kim, J. S., "A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel", Design & Manufacturing, Vol. 17:2, 22-26, 2023.
- Kim, J. S., "A study on the surface roughness of STD11 material according to the helix angle of ball endmill", Design & Manufacturing, vol. 17:1, 33-39, 2023.
- Hossain, M. S. J., Ahmad, N. "Artificial intelligence based surface roughness prediction modeling for three dimensional end milling". Int. J. Adv. Sci. Technol., Vol. 45:8, 1-18. 2012.
- Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A., Hyperband: "A novel bandit-based approach to hyper-parameter optimization", J. Mach. Learn. Res. Vol. 18, 6765-6816. 2017.
- Lee, J. H., Kim, J. S., "A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process", Design & Manufacturing, Vol. 15:4, 24-31, 2021.
- Lee, J. H., Kim, J. S., "A study on the accuracy of multi-task learning structure artificial neural network applicable to multi-quality prediction in injection molding process", Design & Manufacturing, Vol. 16:3, 1-8, 2022.
- Kingma, D. P., Ba, J., Adam: "A method for stochastic optimization"., arXiv, 2014.
- Kim, D. H., Kim, J. N., Kim, J. I., "Elastic exponential linear units for convolutional neural networks, Neurocomputing", Vol. 406, 253-266, 2020.