DOI QR코드

DOI QR Code

Effect of Resveratrol and Curcumin on Gene Expression of Methicillin-Resistant Staphylococcus aureus (MRSA) Toxins

  • Areej M. El-Mahdy (Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University) ;
  • Maisa Alqahtani (Biology Department, College of Science, Princess Nourah bint Abdulrahman University) ;
  • May Almukainzi (Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University) ;
  • Majed F. Alghoribi (Infectious Diseases Research Department, King Abdullah International Medical Research Center) ;
  • Shaymaa H Abdel-Rhman (Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University)
  • Received : 2023.09.02
  • Accepted : 2023.10.23
  • Published : 2024.01.28

Abstract

Staphylococcus aureus is an opportunistic pathogen that can lead to a number of potentially terrible community- and hospital-acquired illnesses. Among the diverse set of virulence factors that S. aureus possesses, secreted toxins play a particularly preeminent role in defining its virulence. In this work, we aimed to facilitate the development of novel strategies utilizing natural compounds to lower S. aureus's toxin production and consequently enhance therapeutic approaches. Two natural polyphenols, resveratrol (RSV) and curcumin (CUR), were tested for their effect on reducing toxin gene production of MRSA isolates. Fifty clinical MRSA isolates were gathered from Riyadh and Jeddah. Molecular screening of toxin genes (sea, seb, sec, sed, seh, lukF, and lukS) harbored by MRSA was performed. Sub-inhibitory concentrations of RSV (50 ㎍/ml) and CUR (20 ㎍/ml) were determined to study their effect on the gene expression MRSA's toxin genes. Our findings revealed the presence of the tested genes in MRSA isolates, with lukF being the most prevalent gene and seh the least detected gene. We found that RSV reduced the relative expression of toxin genes, sea, seb, lukF, and lukS, respectively, while CUR decreased the relative expression of sea and seb genes in the examined isolates. Regarding lukF and lukS, CUR downregulated the expression of both genes in some isolates and upregulated the expression in other isolates. From these results, we concluded that RSV and CUR could be used as alternative therapeutic approaches to treat MRSA infections through reducing toxin production.

Keywords

Acknowledgement

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R166), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

  1. DeLeo FR, Diep BA, Otto M. 2009. Host defense and pathogenesis in Staphylococcus aureus infections. Infect. Dis. Clin. North Am. 23: 17-34. 
  2. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661. 
  3. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. 2019. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: a brief review. AIMS Microbiol. 5: 117-137. 
  4. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. 2019. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17: 203-218. 
  5. Grumann D, Nubel U, Broker BM. 2014. Staphylococcus aureus toxins-their functions and genetics. Infect. Genet. Evol. 21: 583-592. 
  6. Oliveira D, Borges A, Simoes M. 2018. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel) 10: 252. 
  7. Bukowski M, Wladyka B, Dubin G. 2010. Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2: 1148-1165. 
  8. Nishifuji K, Sugai M, Amagai M. 2008. Staphylococcal exfoliative toxins:"molecular scissors" of bacteria that attack the cutaneous defense barrier in mammals. J. Dermatol. Sci. 49: 21-31. 
  9. Wilson GJ, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON, Merriman JA, et al. 2011. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 7: e1002271. 
  10. Miklasinska-Majdanik M, Kepa M, Wojtyczka RD, Idzik D, Wasik TJ. 2018. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Rre. Public Health 15: 2321. 
  11. Dong Z. 2003. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat. Res. 523: 145-150. 
  12. Sun Q, Heilmann J, Konig B. 2015. Natural phenolic metabolites with anti-angiogenic properties - a review from the chemical point of view. Beilstein J. Org. Chem. 11: 249-264. 
  13. Sadruddin S, Arora R. 2009. Resveratrol: biologic and therapeutic implications. J. Cardiometab. Syndr. 4: 102-106. 
  14. Smitha S, Dhananjaya BL, Dinesha R, Srinivas L. 2009. Purification and characterization of a approximately 34 kDa antioxidant protein (beta-turmerin) from turmeric (Curcuma longa) waste grits. Biochimie 91: 1156-1162. 
  15. Zacchino SA, Butassi E, Liberto MD, Raimondi M, Postigo A, Sortino M. 2017. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 37: 27-48. 
  16. Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, et al. 2018. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol. 56: 10.1128/jcm.01934-01917. 
  17. Standards Australia 1995. Water Microbiology-Heterotrophic Colony Count Methods-Pour Plate Method using Plate Count Agar. AS 4276.3.1. Committee FT/20 WMHb, Australia: Council of Standards Australia. 
  18. Rehab ME, Dina ER, Shaymaa H. 2016. Toxin gene profile and antibiotic resistance of Staphylococcus aureus isolated from clinical and food samples in Egypt. Afr. J. Microbiol Res. 10: 428-437. 
  19. Abdel-hamed A-HA, Abdel-Rhman SH, El-Sokkary MA. 2016. Studies on leukocidins toxins and antimicrobial resistance in Staphylococcus aureus isolated from various clinical sources. Afr. J. Microbiol. Res. 10: 591-599. 
  20. Brakstad OG, Aasbakk K, Maeland JA. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30: 1654-1660. 
  21. Shimamura Y, Utsumi M, Hirai C, Nakano S, Ito S, Tsuji A, et al. 2018. Binding of catechins to staphylococcal enterotoxin A. Molecules 23: 1125. 
  22. Duan J, Li M, Hao Z, Shen X, Liu L, Jin Y, et al. 2018. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg. Microbes Infect. 7: 136. 
  23. Zacchino SA, Butassi E, Di Liberto M, Raimondi M, Postigo A, Sortino M. 2017. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 37: 27-48. 
  24. Vasavi H, Sudeep H, Lingaraju H, Prasad KS. 2017. Bioavailability-enhanced ResveramaxTM modulates quorum sensing and inhibits biofilm formation in Pseudomonas aeruginosa PAO1. Microb. Pathog. 104: 64-71. 
  25. Santhakumari S, Ravi A. 2019. Targeting quorum sensing mechanism: an alternative anti-virulent strategy for the treatment of bacterial infections. S. Afr. J. Bot. 120: 81-86. 
  26. Cherubin P, Garcia MC, Curtis D, Britt CB, Craft Jr JW, Burress H, et al. 2016. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds. PLoS One 11: e0166477. 
  27. Ma DS, Tan LTH, Chan KG, Yap WH, Pusparajah P, Chuah LH, et al. 2018. Resveratrol-potential antibacterial agent against foodborne pathogens. Front. Pharmacol. 9: 102. 
  28. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res. Int. 2014: 186864. 
  29. Schraufstatter E, Bernt H. 1949. Antibacterial action of curcumin and related compounds. Nature 164: 456-457. 
  30. Wang J, Zhou X, Li W, Deng X, Deng Y, Niu X. 2016. Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin. Sci. Rep. 6: 28254. 
  31. Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, et al. 2020. Antibacterial mechanism of curcumin: a review. Chem. Biodivers. 17: e2000171. 
  32. Fraser JD, Proft T. 2008. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 225: 226-243. 
  33. Thurlow LR, Joshi GS, Richardson AR. 2012. Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). FEMS Immunol. Med. Microbiol. 65: 5-22. 
  34. van der Meeren BT, Millard PS, Scacchetti M, Hermans MH, Hilbink M, Concelho TB, et al. 2014. Emergence of methicillin resistance and Panton-Valentine leukocidin positivity in hospital-and community-acquired Staphylococcus aureus infections in B eira, Mozambique. Trop. Med. Int. Health 19: 169-176. 
  35. Munoz-Cazares N, Garcia-Contreras R, Perez-Lopez M, Castillo-Juarez I. 2017. Phenolic compounds with anti-virulence properties. pp. 139-167. Phenolic Compounds-Biological Activity. 
  36. Rasooly R, Molnar A, Choi H-Y, Do P, Racicot K, Apostolidis E. 2019. In-vitro inhibition of staphylococcal pathogenesis by witch-hazel and green tea extracts. Antibiotics 8: 244. 
  37. Su Y, Ma L, Wen Y, Wang H, Zhang S. 2014. Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus. Molecules 19: 12630-12639. 
  38. Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. 2013. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 20: 714-718. 
  39. Kali A, Bhuvaneshwar D, Charles PM, Seetha KS. 2016. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J. Basic Clin. Pharm. 7: 93. 
  40. Shimamura Y, Hirai C, Sugiyama Y, Shibata M, Ozaki J, Murata M, et al. 2017. Inhibitory effects of food additives derived from polyphenols on staphylococcal enterotoxin A production and biofilm formation by Staphylococcus aureus. Biosci. Biotechnol. Biochem. 81: 2346-2352. 
  41. Kadhim S, Singh NP, Zumbrun EE, Cui T, Chatterjee S, Hofseth L, et al. 2018. Resveratrol-mediated attenuation of Staphylococcus aureus enterotoxin b-induced acute liver injury is associated with regulation of microrna and induction of myeloid-derived suppressor cells. Front. Microbiol. 9: 2910. 
  42. Alghetaa H, Mohammed A, Sultan M, Busbee P, Murphy A, Chatterjee S, et al. 2018. Resveratrol protects mice against SEB-induced acute lung injury and mortality by miR-193a modulation that targets TGF-β signalling. J. Cell. Mol. Med. 22: 2644-2655. 
  43. Wang S, Kang OH, Kwon DY. 2021. Bisdemethoxycurcumin reduces methicillin-resistant Staphylococcus aureus expression of virulence-related exoproteins and inhibits the biofilm formation. Toxins 13: 804.