DOI QR코드

DOI QR Code

Optimizing Conditions for the Production of Bacterial Extracellular Vesicles of Vibrio vulnificus and Analysis of the Inner Small RNA Compositions

  • Jeong Heon Park (Department of Life Sciences, Sogang University) ;
  • Suji Song (Department of Life Sciences, Sogang University) ;
  • Soyee Kim (Department of Life Sciences, Sogang University) ;
  • Minjeong Kim (Department of Life Sciences, Sogang University) ;
  • Kun-Soo Kim (Department of Life Sciences, Sogang University)
  • 투고 : 2023.10.04
  • 심사 : 2023.11.22
  • 발행 : 2024.01.28

초록

Chemical and physical elements affecting the production of bacterial extracellular vesicles (BEVs) of the human pathogen Vibrio vulnificus were quantitatively assessed to optimize the conditions for the BEV production by using the western blot quantification for an outer membrane porin OmpU and by fluorescent dye FM4-64. When cells were cultured at 37℃ in an enriched medium (2 × Luria Bertani; 2 × LB) in the presence of EDTA, they produced about 70% more BEVs. BEVs were purified from the cells cultured in the established optimal conditions by the density gradient ultracentrifugation. The dynamic light scattering measurement of the purified BEVs showed that the diameter of them ranged from approximately 25 nm to 161 nm. We hypothesized that there may be some features in nucleotide sequences specific to RNAs packaged in BEVs compared to those in cellular RNA molecules. We compared the nucleotide sequences and abundance of sRNAs between in the cellular fraction and in BEVs through next-generation sequencing (NGS). While no distinct feature was observed in the nucleotide sequences of sRNAs between two groups, the length of sRNA fragments from BEVs were significantly shorter than those in cytoplasm.

키워드

과제정보

This work was supported by grants from the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT (2022R1A2C1008958), Republic of Korea.

참고문헌

  1. Toyofuku M, Nomura N, Eberl L. 2019. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17: 13-24. 
  2. Juodeikis R, Carding SR. 2022. Outer membrane vesicles: biogenesis, functions, and issues. Microbiol. Mol. Biol. Rev. 86: e00032-00022. 
  3. Sjostrom AE, Sandblad L, Uhlin BE, Wai SN. 2015. Membrane vesicle-mediated release of bacterial RNA. Sci. Rep. 5: 15329. 
  4. Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarz DW, et al. 2016. A Novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog. 12: e1005672. 
  5. Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, et al. 2017. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci. Rep. 7: 7072. 
  6. Altindis E, Fu Y, Mekalanos JJ. 2014. Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc. Natl. Acad. Sci.USA 111: E1548-E1556. 
  7. Orench-Rivera N, Kuehn MJ. 2016. Environmentally controlled bacterial vesicle-mediated export. Cell. Microbiol. 18: 1525-1536. 
  8. MacDonald IA, Kuehn MJ. 2013. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J. Bacteriol. 195: 2971-2981. 
  9. Manning AJ, Kuehn MJ. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11: 258-271. 
  10. Kim H-M, Davey ME. 2020. Synthesis of ppGpp impacts type IX secretion and biofilm matrix formation in Porphyromonas gingivalis. NPJ Biofilms Microbiomes 6: 5. 
  11. Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Hoiby N. 2000. Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45: 9-13. 
  12. McMahon KJ, Castelli ME, Vescovi EG, Feldman MF. 2012. Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system. J. Bacteriol. 194: 3241-3249. 
  13. Elhenawy W, Debelyy MO, Feldman MF. 2014. Preferential packing of acidic glycosidases and proteases into bacteroides outer membrane vesicles. mBio 5: e00909-00914. 
  14. Kim JH, Lee J, Park J, Gho YS. 2015. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin. Cell. Dev. Biol. 40: 97-104. 
  15. Ahmadi Badi S, Bruno SP, Moshiri A, Tarashi S, Siadat SD, Masotti A. 2020. Small RNAs in outer membrane vesicles and their function in host-microbe interactions. Front. Microbiol. 11: 1209. 
  16. Reddy GP, Hayat U, Abeygunawardana C, Fox C, Wright AC, Maneval DR, Jr., et al. 1992. Purification and determination of the structure of capsular polysaccharide of Vibrio vulnificus MO6-24. J. Bacteriol. 174: 2620-2630. 
  17. Park D-K, Lee K-E, Baek C-H, Kim IH, Kwon J-H, Lee WK, et al. 2006. Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. J. Bacteriol. 188: 2214-2221. 
  18. McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ. 2006. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J. Bacteriol. 188: 5385-5392. 
  19. Yang HC, Ham YM, Kim JA, Rhee WJ. 2021. Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J. Extracell. Vesicles. 10: e12074. 
  20. Li K, Wong DK, Hong KY, Raffai RL. 2018. Cushioned-density gradient ultracentrifugation (C-DGUC): A refined and high performance method for the isolation, characterization, and use of exosomes. Methods Mol. Biol. 1740: 69-83. 
  21. Ko SH, Vargas-Lara F, Patrone PN, Stavis SM, Starr FW, Douglas JF, et al. 2014. High-speed, high-purity separation of gold nanoparticle-DNA origami constructs using centrifugation. Soft Matter 10: 7370-7378. 
  22. Castle JD. 2001. Overview of cell fractionation. Curr. Protoc. Protein Sci. Chapter 4. Unit 4.1. 
  23. Schwechheimer C, Kuehn MJ. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13: 605-619. 
  24. McBroom AJ, Kuehn MJ. 2007. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63: 545-558. 
  25. Frias A, Manresa A, de Oliveira E, Lopez-Iglesias C, Mercade E. 2010. Membrane vesicles: a common feature in the extracellular matter of cold-adapted antarctic bacteria. Microb. Ecol. 59: 476-486. 
  26. Florez C, Raab JE, Cooke AC, Schertzer JW. 2017. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa. mBio 8: e01034-17. 
  27. Reichelt J, Baumann P. 1973. Taxonomy of the marine, luminous bacteria. Arch. Microbiol. 94: 283-330. 
  28. Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, et al. 2012. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 78: 6217-6224. 
  29. Prados-Rosales R, Weinrick BC, Pique DG, Jacobs WR, Jr., Casadevall A, Rodriguez GM. 2014. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J. Bacteriol. 196: 1250-1256. 
  30. Godlewska R, Klim J, DEBski J, WyszyNSka A, LAsica A. 2019. Influence of environmental and genetic factors on proteomic profiling of outer membrane vesicles from. Polish J. Microbiol.. 68: 255-261. 
  31. Gerritzen MJH, Maas RHW, van den Ijssel J, van Keulen L, Martens DE, Wijffels RH, et al. 2018. High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis. Microb. Cell Fact. 17: 157-166. 
  32. Jan AT. 2017. Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update. Front. Microbiol. 8: 1053. 
  33. Van de Waterbeemd B, Zomer G, Kaaijk P, Ruiterkamp N, Wijffels RH, Van den Dobbelsteen GPJM, et al. 2013. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis. PLoS One 8: e65157. 
  34. Bager RJ, Persson G, Nesta B, Soriani M, Serino L, Jeppsson M, et al. 2013. Outer membrane vesicles reflect environmental cues in Gallibacterium anatis. Vet. Microbiol. 167: 565-572. 
  35. Choi CW, Park EC, Yun SH, Lee SY, Lee YG, Hong Y, et al. 2014. Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440. J. Proteome Res. 13: 4298-4309. 
  36. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17.1: 10-12.. 
  37. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359. 
  38. Huber M, Frohlich KS, Radmer J, Papenfort K. 2020. Switching fatty acid metabolism by an RNA-controlled feed forward loop. Proc. Natl Acad. Sci. USA 117: 8044-8054. 
  39. Song T, Mika F, Lindmark B, Liu Z, Schild S, Bishop A, et al. 2008. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol. Microbiol. 70: 100-111. 
  40. Wen Y, Kim IH, Kim KS. 2016. Iron- and quorum-sensing signals converge on small quorum-regulatory RNAs for coordinated regulation of virulence factors in Vibrio vulnificus. J. Biol. Chem. 291: 14213-14230. 
  41. Yamamoto S, Izumiya H, Mitobe J, Morita M, Arakawa E, Ohnishi M, et al. 2011. Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J. Bacteriol. 193: 1953-1965. 
  42. Liu B, Fang J, Chen H, Sun Y, Yang S, Gao Q, et al. 2022. GcvB regulon revealed by transcriptomic and proteomic analysis in Vibrio alginolyticus. Int. J. Mol. Sci. 23. 
  43. Moriano-Gutierrez S, Bongrand C, Essock-Burns T, Wu L, McFall-Ngai MJ, Ruby EG. 2020. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18: e3000934. 
  44. Richard AL, Withey JH, Beyhan S, Yildiz F, DiRita VJ. 2010. The Vibrio cholerae virulence regulatory cascade controls glucose uptake through activation of TarA, a small regulatory RNA. Mol. Microbiol. 78: 1171-1181. 
  45. Mendez-Contreras SI, Tsao-Wu M, Liu J. 2018. Identifying regulatory targets of the small RNA MtlS in Vibrio cholerae. FASEB J. 32: 525.528-525.528. 
  46. Plaza N, Perez-Reytor D, Ramirez-Araya S, Pavon A, Corsini G, Loyola DE, et al. 2019. Conservation of small regulatory RNAs in Vibrio parahaemolyticus: Possible role of RNA-OUT encoded by the pathogenicity island (VPaI-7) of pandemic strains. Int. J. Mol. Sci. 20: 2827. 
  47. Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL. 2005. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol. 58: 1186-1202. 
  48. Mandel MJ, Stabb EV, Ruby EG. 2008. Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: Focus on point miscalls and artefactual expansions. BMC Genomics 9: 138-152. 
  49. Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F, Frohlich KS, et al. 2020. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat. Commun. 11: 6067-6077. 
  50. Davis BM, Waldor MK. 2007. RNase E-dependent processing stabilizes MicX, a Vibrio cholerae sRNA. Mol. Microbiol. 65: 373-385. 
  51. Papenfort K, Forstner KU, Cong JP, Sharma CM, Bassler BL. 2015. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc. Natl. Acad. Sci. USA 112: E766-775. 
  52. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
  53. Yoon H. 2016. Bacterial outer membrane viscles as a delivery system for virulence regulation. J. Microbiol. Biotechnol. 26: 1343-1347. 
  54. Hampton CM, Guerrero-Ferreira RC, Storms RE, Taylor JV, Yi H, Gulig PA, et al. 2017. The opportunistic pathogen Vibrio vulnificus produces outer membrane vesicles in a spatially distinct manner related to capsular polysaccharide. Front. Microbiol. 8: 2177.