Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (grant number: RS-2023-00305153) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI22C1723 and HR20C0026).
References
- Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. IEEE Signal Process Mag 2018;35:53-65 https://doi.org/10.1109/MSP.2017.2765202
- Kim K, Cho K, Jang R, Kyung S, Lee S, Ham S, et al. Updated primer on generative artificial intelligence and large language models in medical imaging for medical professionals. Korean J Radiol 2024;25:224-242
- You A, Kim JK, Ryu IH, Yoo TK. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. Eye Vis (Lond) 2022;9:6
- Skandarani Y, Lalande A, Afilalo J, Jodoin PM. Generative adversarial networks in cardiology. Can J Cardiol 2022;38:196-203 https://doi.org/10.1016/j.cjca.2021.11.003
- Qin Z, Liu Z, Zhu P, Xue Y. A GAN-based image synthesis method for skin lesion classification. Comput Methods Programs Biomed 2020;195:105568
- Jung KH. Uncover this tech term: foundation model. Korean J Radiol 2023;24:1038-1041 https://doi.org/10.3348/kjr.2023.0790
- Pai S, Bontempi D, Hadzic I, Prudente V, Sokac M, Chaunzwa TL, et al. Foundation model for cancer imaging biomarkers. Nat Mach Intell 2024;6:354-367
- Higgins I, Matthey L, Pal A, Burgess CP, Glorot X, Botvinick MM, et al. beta-VAE: learning basic visual concepts with a constrained variational framework [accessed on March 10, 2024]. Available at: https://api.semanticscholar.org/CorpusID:46798026
- Kingma DP. Auto-encoding variational bayes. arXiv [Preprint]. 2013 [accessed on March 10, 2024]. Available at: https://doi.org/10.48550/arXiv.1312.6114
- Van Den Oord A, Vinyals O. Neural discrete representation learning [accessed on March 10, 2024]. Available at: https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
- Van den Oord A, Kalchbrenner N, Espeholt L, Vinyals O, Graves A. Conditional image generation with PixelCNN decoders [accessed on March 10, 2024]. Available at: https://proceedings.neurips.cc/paper/2016/hash/b1301141feffabac455e1f90a7de2054-Abstract.html
- Van den Oord A, Kalchbrenner N, Kavukcuoglu K. Pixel recurrent neural networks [accessed on March 10, 2024]. Available at: https://proceedings.mlr.press/v48/oord16.html
- Salimans T, Karpathy A, Chen X, Kingma DP. PixelCNN++: improving the pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv [Preprint]. 2017 [accessed on March 10, 2024]. Available at: https://doi.org/10.48550/arXiv.1701.05517
- Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models [accessed on March 10, 2024]. Available at: https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
- Nichol AQ, Dhariwal P. Improved denoising diffusion probabilistic models [accessed on March 10, 2024]. Available at: https://proceedings.mlr.press/v139/nichol21a.html
- Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets [accessed on March 10, 2024]. Available at: https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
- Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of GANs for improved quality, stability, and variation. arXiv [Preprint]. 2017 [accessed on March 10, 2024]. Available at: https://doi.org/10.48550/arXiv.1710.10196
- Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks [accessed on March 10, 2024]. Available at: https://openaccess.thecvf.com/content_CVPR_2019/papers/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.pdf
- Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN [accessed on March 10, 2024]. Available at: https://openaccess.thecvf.com/content_CVPR_2020/papers/Karras_Analyzing_and_Improving_the_Image_Quality_of_StyleGAN_CVPR_2020_paper.pdf
- Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models [accessed on March 10, 2024]. Available at: https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf
- Song J, Meng C, Ermon S. Denoising diffusion implicit models. arXiv [Preprint]. 2020 [accessed on March 10, 2024]. Available at: https://doi.org/10.48550/arXiv.2010.02502
- Song Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B. Score-based generative modeling through stochastic differential equations. arXiv [Preprint]. 2020 [accessed on March 10, 2024]. Available at: https://doi.org/10.48550/arXiv.2011.13456
- Horvat C, Pfister JP. Denoising normalizing flow [accessed on March 10, 2024]. Available at: https://proceedings.neurips.cc/paper/2021/hash/4c07fe24771249c343e70c32289c1192-Abstract.html
- Papamakarios G, Nalisnick E, Rezende DJ, Mohamed S, Lakshminarayanan B. Normalizing flows for probabilistic modeling and inference. J Mach Learn Res 2021;22:1-64
- Rezende D, Mohamed S. Variational inference with normalizing flows [accessed on March 10, 2024]. Available at: https://proceedings.mlr.press/v37/rezende15.pdf
- Zhang Q, Chen Y. Diffusion normalizing flow [accessed on March 10, 2024]. Available at: https://proceedings.neurips.cc/paper/2021/file/876f1f9954de0aa402d91bb988d12cd4-Paper.pdf
- Du Y, Li S, Tenenbaum J, Mordatch I. Learning iterative reasoning through energy minimization [accessed on March 10, 2024]. Available at: https://proceedings.mlr.press/v162/du22d/du22d.pdf
- Liu N, Li S, Du Y, Tenenbaum JB, Torralba A. Learning to compose visual relations [accessed on March 10, 2024]. Available at: https://dl.acm.org/doi/10.5555/3540261.3542035
- Xie J, Lu Y, Zhu SC, Wu Y. A theory of generative ConvNet [accessed on March 10, 2024]. Available at: https://proceedings.mlr.press/v48/xiec16.html
- Xie J, Zhu SC, Wu YN. Learning energy-based spatial-temporal generative convnets for dynamic patterns. IEEE Trans Pattern Anal Mach Intell 2021;43:516-531 https://doi.org/10.1109/TPAMI.2019.2934852
- Dhariwal P, Nichol A. Diffusion models beat GANs on image synthesis [accessed on March 10, 2024]. Available at: https://proceedings.nips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
- Metz L, Poole B, Pfau D, Sohl-Dickstein J. Unrolled generative adversarial networks. arXiv [Preprint]. 2016 [accessed on March 10, 2024]. Available at: https://doi.org/10.48550/arXiv.1611.02163
- Thanh-Tung H, Tran T. Catastrophic forgetting and mode collapse in GANs [accessed on March 10, 2024]. Available at: https://doi.org/10.1109/IJCNN48605.2020.9207181
- Karras T, Aittala M, Hellsten J, Laine S, Lehtinen J, Aila T. Training generative adversarial networks with limited data [accessed on March 10, 2024]. Available at: https://papers.nips.cc/paper/2020/file/8d30aa96e72440759f74bd2306c1fa3d-Paper.pdf
- Wang Z, Zheng H, He P, Chen W, Zhou M. Diffusion-GAN: training GANs with diffusion. arXiv [Preprint]. 2022 [accessed on March 10, 2024]. Available at: https://doi.org/10.48550/arXiv.2206.02262
- Hong GS, Jang M, Kyung S, Cho K, Jeong J, Lee GY, et al. Overcoming the challenges in the development and implementation of artificial intelligence in radiology: a comprehensive review of solutions beyond supervised learning. Korean J Radiol 2023;24:1061-1080
- Moon JH, Lee H, Shin W, Kim YH, Choi E. Multi-modal understanding and generation for medical images and text via vision-language pre-training. IEEE J Biomed Health Inform 2022;26:6070-6080 https://doi.org/10.1109/JBHI.2022.3207502
- Tumanyan N, Geyer M, Bagon S, Dekel T. Plug-and-play diffusion features for text-driven image-to-image translation [accessed on April 2, 2024]. Available at: https://openaccess.thecvf.com/content/CVPR2023/html/Tumanyan_Plug-and-Play_Diffusion_Features_for_Text-Driven_Image-to-Image_Translation_CVPR_2023_paper.html
- Lee H, Kang M, Han B. Conditional score guidance for text-driven image-to-image translation [accessed on March 10, 2024]. Available at: https://dl.acm.org/doi/10.5555/3666122.3667801
- Yang Q, Li N, Zhao Z, Fan X, Chang EI, Xu Y. MRI cross-modality image-to-image translation. Sci Rep 2020;10:3753
- Wang Z, Yang Y, Chen Y, Yuan T, Sermesant M, Delingette H, et al. Mutual information guided diffusion for zero-shot cross-modality medical image translation. IEEE Trans Med Imaging 2024;43:2825-2838
- Wang K, Chen Z, Zhu M, Li Z, Weng J, Gu T. Score-based counterfactual generation for interpretable medical image classification and lesion localization. IEEE Trans Med Imaging 2024 [Epub]. https://doi.org/10.1109/TMI.2024.3375357
- Lee S, Jeong B, Kim M, Jang R, Paik W, Kang J, et al. Emergency triage of brain computed tomography via anomaly detection with a deep generative model. Nat Commun 2022;13:4251
- Geman D, Geman S, Hallonquist N, Younes L. Visual turing test for computer vision systems [accessed on March 14, 2024]. Available at: https://doi.org/10.1073/pnas.1422953112
- Borji A. Pros and cons of GAN evaluation measures. Comput Vis Image Understand 2019;179:41-65 https://doi.org/10.1016/j.cviu.2018.10.009
- Borji A. Pros and cons of GAN evaluation measures: new developments. Comput Vis Image Understand 2022;215:103329
- Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electron Lett 2008;44:800-801 https://doi.org/10.1049/el:20080522
- Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600-612 https://doi.org/10.1109/TIP.2003.819861
- Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for training GANs [accessed on March 14, 2024]. Available at: https://proceedings.neurips.cc/paper_files/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html
- Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs trained by a two time-scale update rule converge to a local nash equilibrium [accessed on March 14, 2024]. Available at: https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
- Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision [accessed on March 14, 2024]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
- Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat 1951;22:79-86
- Sajjadi MS, Bachem O, Lucic M, Bousquet O, Gelly S. Assessing generative models via precision and recall [accessed on March 14, 2024]. Available at: https://dl.acm.org/doi/10.5555/3327345.3327429
- Sculley D. Web-scale k-means clustering [accessed on March 14, 2024]. Available at: https://doi.org/10.1145/1772690.1772862
- Naeem MF, Oh SJ, Uh Y, Choi Y, Yoo J. Reliable fidelity and diversity metrics for generative models [accessed on March 14, 2024]. Available at: https://proceedings.mlr.press/v119/naeem20a.html
- Park SH, Han K, Jang HY, Park JE, Lee JG, Kim DW, et al. Methods for clinical evaluation of artificial intelligence algorithms for medical diagnosis. Radiology 2023;306:20-31 https://doi.org/10.1148/radiol.220182
- Faghani S, Khosravi B, Zhang K, Moassefi M, Jagtap JM, Nugen F, et al. Mitigating bias in radiology machine learning: 3. Performance metrics. Radiol Artif Intell 2022;4:e220061
- Erickson BJ, Kitamura F. Magician's corner: 9. Performance metrics for machine learning models. Radiol Artif Intell 2021;3:e200126
- Bae K, Oh DY, Yun ID, Jeon KN. Bone suppression on chest radiographs for pulmonary nodule detection: comparison between a generative adversarial network and dual-energy subtraction. Korean J Radiol 2022;23:139-149 https://doi.org/10.3348/kjr.2021.0146
- Chung H, Ye JC. Score-based diffusion models for accelerated MRI. Med Image Anal 2022;80:102479
- Conte GM, Weston AD, Vogelsang DC, Philbrick KA, Cai JC, Barbera M, et al. Generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use in a multisequence brain tumor segmentation model. Radiology 2021;299:313-323 https://doi.org/10.1148/radiol.2021203786
- Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys 2018;45:3627-3636 https://doi.org/10.1002/mp.13047
- Hwang HJ, Kim H, Seo JB, Ye JC, Oh G, Lee SM, et al. Generative adversarial network-based image conversion among different computed tomography protocols and vendors: effects on accuracy and variability in quantifying regional disease patterns of interstitial lung disease. Korean J Radiol 2023;24:807-820
- Kustner T, Munoz C, Psenicny A, Bustin A, Fuin N, Qi H, et al. Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute. Magn Reson Med 2021;86:2837-2852 https://doi.org/10.1002/mrm.28911
- Lee SB, Cho YJ, Hong Y, Jeong D, Lee J, Kim SH, et al. Deep learning-based image conversion improves the reproducibility of computed tomography radiomics features: a phantom study. Invest Radiol 2022;57:308-317 https://doi.org/10.1097/RLI.0000000000000839
- Lin W, Lin W, Chen G, Zhang H, Gao Q, Huang Y, et al. Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer's disease. Front Neurosci 2021;15:646013
- Lyu J, Fu Y, Yang M, Xiong Y, Duan Q, Duan C, et al. Generative adversarial network-based noncontrast CT angiography for aorta and carotid arteries. Radiology 2023;309:e230681
- Marcadent S, Hofmeister J, Preti MG, Martin SP, Van De Ville D, Montet X. Generative adversarial networks improve the reproducibility and discriminative power of radiomic features. Radiol Artif Intell 2020;2:e190035
- Ozbey M, Dalmaz O, Dar SUH, Bedel HA, Ozturk S, Gungor A, et al. Unsupervised medical image translation with adversarial diffusion models. IEEE Trans Med Imaging 2023;42:3524-3539 https://doi.org/10.1109/TMI.2023.3290149
- Preetha CJ, Meredig H, Brugnara G, Mahmutoglu MA, Foltyn M, Isensee F, et al. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health 2021;3:e784-e794
- Schlaeger S, Li HB, Baum T, Zimmer C, Moosbauer J, Byas S, et al. Longitudinal assessment of multiple sclerosis lesion load with synthetic magnetic resonance imaging-a multicenter validation study. Invest Radiol 2023;58:320-326
- Wicaksono KP, Fujimoto K, Fushimi Y, Sakata A, Okuchi S, Hinoda T, et al. Super-resolution application of generative adversarial network on brain time-of-flight MR angiography: image quality and diagnostic utility evaluation. Eur Radiol 2023;33:936-946
- Xia W, Niu C, Cong W, Wang G. Cube-based 3D denoising diffusion probabilistic model for cone beam computed tomography reconstruction with incomplete data. arXiv [Preprint]. 2023 [accessed on March 20, 2024]. Available at: https://arxiv.org/abs/2303.12861v1
- Xiao Y, Chen C, Wang L, Yu J, Fu X, Zou Y, et al. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction. Phys Med Biol 2023;68:135007
- Xie T, Cao C, Cui Z, Li F, Wei Z, Zhu Y, et al. Brain PET synthesis from MRI using joint probability distribution of diffusion model at ultrahigh fields. arXiv [Preprint]. 2022 [accessed on March 17, 2024]. Available at: https://doi.org/10.48550/arXiv.2211.08901
- Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks [accessed on March 17, 2024]. Available at: https://doi.org/10.48550/arXiv.1611.07004
- Cui ZX, Cao C, Liu S, Zhu Q, Cheng J, Wang H, et al. Self-score: self-supervised learning on score-based models for MRI reconstruction. arXiv [Preprint]. 2022 [accessed on March 16, 2024]. Available at: https://doi.org/10.48550/arXiv.2209.00835
- Choe J, Lee SM, Do KH, Lee G, Lee JG, Lee SM, et al. Deep learning-based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology 2019;292:365-373 https://doi.org/10.1148/radiol.2019181960
- Kim H, Park CM, Lee M, Park SJ, Song YS, Lee JH, et al. Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability. PLoS One 2016;11:e0164924
- Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015;50:757-765 https://doi.org/10.1097/RLI.0000000000000180
- Meyer M, Ronald J, Vernuccio F, Nelson RC, Ramirez-Giraldo JC, Solomon J, et al. Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings. Radiology 2019;293:583-591 https://doi.org/10.1148/radiol.2019190928
- Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 2017;44:1050-1062
- Sandfort V, Yan K, Pickhardt PJ, Summers RM. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 2019;9:16884
- Rawte V, Sheth A, Das A. A survey of hallucination in large foundation models. arXiv [Preprint]. 2023 [accessed on March 20, 2024]. Available at: https://doi.org/10.48550/arXiv.2309.05922
- Wolterink JM, Mukhopadhyay A, Leiner T, Vogl TJ, Bucher AM, Isgum I. Generative adversarial networks: a primer for radiologists. Radiographics 2021;41:840-857 https://doi.org/10.1148/rg.2021200151
- Choi J, Kim S, Jeong Y, Gwon Y, Yoon S. ILVR: conditioning method for denoising diffusion probabilistic models. arXiv [Preprint]. 2021 [accessed on April 1, 2024]. Available at: https://doi.org/10.48550/arXiv.2108.02938
- Zhu J, Shen Y, Zhao D, Zhou B. In-domain GAN inversion for real image editing. In: Vedaldi A, Bischof H, Brox T, Frahm JM, eds. Computer vision-ECCV 2020. Cham: Springer, 2020:592-608
- Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks [accessed on March 26, 2024]. Available at: https://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
- Shrivastav A. Generative AI hallucinations: revealing best techniques to minimize hallucinations [accessed on April 9, 2024]. Available at: https://www.kellton.com/kellton-tech-blog/generative-ai-hallucinations-revealing-best-techniques
- Bercea CI, Neumayr M, Rueckert D, Schnabel JA. Mask, stitch, and re-sample: enhancing robustness and generalizability in anomaly detection through automatic diffusion models. arXiv [Preprint]. 2023 [accessed on March 20, 2024]. Available at: https://doi.org/10.48550/arXiv.2305.19643
- Han C, Murao K, Noguchi T, Kawata Y, Uchiyama F, Rundo L, et al. Learning more with less: conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images [accessed on March 20, 2024]. Available at: https://dl.acm.org/doi/10.1145/3357384.3357890
- Jin D, Xu Z, Tang Y, Harrison AP, Mollura DJ. CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi A, Schnabel J, Davatzikos C, Alberola-Lopez C, Fichtinger G, eds. Medical image computing and computer assisted intervention-MICCAI 2018. Cham: Springer, 2018:732-740
- Moon HH, Jeong J, Park JE, Kim N, Choi C, Kim YH, et al. Generative AI in glioma: ensuring diversity in training image phenotypes to improve diagnostic performance for IDH mutation prediction. Neuro Oncol 2024;26:1124-1135 https://doi.org/10.1093/neuonc/noae012
- Park JE, Eun D, Kim HS, Lee DH, Jang RW, Kim N. Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type. Sci Rep 2021;11:9912
- Rosnati M, Roschewitz M, Glocker B. Robust semi-supervised segmentation with timestep ensembling diffusion models [accessed on March 20, 2024]. Available at: https://proceedings.mlr.press/v225/rosnati23a/rosnati23a.pdf
- Wolleb J, Bieder F, Sandkuhler R, Cattin PC. Diffusion models for medical anomaly detection. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, eds. Medical image computing and computer assisted intervention-MICCAI 2022. Cham: Springer, 2022:35-45
- Chen D, Han Y, Duncan J, Jia L, Shan J. Generative artificial intelligence enhancements for reducing image-based training data requirements. Ophthalmol Sci 2024;4:100531