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INTRODUCTION

Generative artificial intelligence (AI), an umbrella term 
that uses deep learning (DL) and other machine learning 
techniques to extract features from underlying structures 
in source data (e.g., images) and generates artificial data 
using AI models, such as generative adversarial networks 
(GANs), diffusion models, or transformer-based models [1,2]. 
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A combination of supervised and unsupervised learning 
methods is used in generative AI. The algorithm is trained 
on labeled datasets to predict new images of specific 
outputs in supervised learning. Unsupervised learning, 
which is used to determine distributions, clusters, and 
relationships in the data, is employed in scenarios wherein 
specific output has not been assigned to the input data. In 
any form, generative AI aims to generate diverse content 
as access to large annotated data is often challenging and 
requires time and labor. 

Image-based generative AI (hereafter referred to as 
image generative AI), including GAN and diffusion models, 
is commonly used for image quality enhancement, domain 
transfer, and imputation as augmented input data in 
the field of medical imaging. Synthetic image data have 
enhanced lesion and image quality in ophthalmology [3], 
enabled denoising of electrocardiogram output [4], and 
augmented data with synthetic photos of skin lesion-
enhanced lesion classifier performance [5]. In radiology, 
generative AI has been used to generate image data from 
radiographs, mammography, ultrasonography (US), computed 
tomography (CT), and magnetic resonance imaging (MRI). 
A paradigm shift has been observed with the application of 
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synthetic images without any modification, whereas 
Approach 2 involves leveraging synthetic images as training 
data for AI modeling to enhance performance. Approach 1 has 
been used in previous studies to generate missing sequences, 
generate images in less harmful ways, generate better-quality 
images, and ensure feature reproducibility depending on 
the type of image generation. Approach 2 has been used as 
training data for downstream DL tasks (supervised learning), 
including lesion detection, diagnosis, and segmentation, in 
previous studies. This review summarizes the basic theories 
of image-generative AI, the strengths and weaknesses of the 
evaluation metrics, and the diverse applications of image-
generative AI in the field of radiology according to their 

foundation models, trained on a large and broad amount of 
data, across multiple downstream tasks [2,6,7]. The potential 
of foundation models lies primarily in text data; however, 
their potential for performing tasks with images has garnered 
an increasing amount of attention. This may be attributed 
to importance of generating sufficient unannotated data 
as an important input for foundation models based on self-
supervised learning. Therefore, achieving a good grasp of 
generative AI, particularly in image-based applications, and 
exploring its applications is necessary.

The diverse usage of generative (synthetic) images in the 
field of radiology can be categorized into two approaches 
(Fig. 1): Approaches 1 and 2. Approach 1 involves utilizing 

Fig. 1. Clinical utility of image generative artificial intelligence. Approach 1 utilizes synthetic images as themselves, while Approach 2 
utilizes real and synthetic images as augmented input data to enhance performance in clinical tasks, such as lesion detection, segmentation, 
and diagnosis.
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clinical and research usage. 

Basic Theories of Image Generative AI

Hierarchy of Various Modeling Technique
The core objective of a generative model is to model the 

probability distribution of data. However, deterministic 
modeling of the distribution is challenging owing to the 
complex and high dimensional nature of the true data 
distribution probability. The dataset is considered to follow 
a certain probability distribution in a generative model 
and trained accordingly. Thus, new samples are generated 
probabilistically, making generative models inherently 
random. Such models are called probabilistic or stochastic 
models [2].

Generative models can be categorized into explicit 
and implicit models based on the modeling of the data 
distribution probability. Explicit density models generate 
new samples based on p (x) by directly modeling the data 
distribution of p (x). Variational autoencoders (VAEs) [8-10], 
PixelCNNs [11-13], and some early diffusion model families 
[14,15] are explicit density generative models. Implicit 
density models use a generative process wherein sampling is 
performed via generative processes to implicitly capture the 
data distribution; thus, the data distribution p (x) is not 
explicitly defined. GAN families [16-19] and some diffusion 
models [20-22] employ implicit density generative models.

Explicit generative models can be categorized into 
tractable and non-tractable, depending on whether the 
probability distribution or likelihood function associated 
with the model can be solved (tractable). Autoregressive 

generative models such as PixelCNNs and Normalizing Flows 
[23-26] are examples of tractable models. Autoregressive 
models factorize the probability density function of all 
the pixels of a given image while normalizing flow models 
transform a probability distribution through a series of 
invertible mappings. Non-tractable models approximate the 
probability distribution using techniques such as Markov 
chain Monte Carlo (MCMC) and variational inference. VAEs, 
some explicit diffusion models, and energy-based [27-30] 
are non-tractable models. Figure 2 presents the taxonomy of 
image-generative AI.

GANs and diffusion models, which have become the most 
popular generative AIs in recent years, are the focus of 
this review. Figure 3 presents the structures of the GANs 
and diffusion models. Both methods generate samples 
by learning the data distribution; however, the sampling 
characteristics and image generation techniques vary. GAN 
is trained by comparing a generator with a discriminator; 
the trained generator generates a sample from a random 
latent vector [16]. In contrast, noise is iteratively added to 
an image in steps (forward process) by diffusion models to 
generate an image by denoising the noisy image (reverse 
process) [14]. Thus, diffusion models generate better-quality 
images than GANs [31]. Unlike diffusion models, which can 
learn more stably, GANs are susceptible to mode collapse 
[32,33], wherein the discriminator and generator fail to 
compete [20,31]. However, because diffusion models are 
computationally complex and require a longer duration to 
longer to generate as they use MCMC to train and generate 
images across many iterations of noise diffusion and 
denoising [21]. Furthermore, unlike GANs, diffusion models 

Fig. 2. Hierarchy of image generative AI. Image generative AI can be categorized as implicit and explicit density models. Explicit density 
models can be further categorized as tractable and non-tractable models. AI = artificial intelligence, LDM = latent diffusion model, DDIM = 
denoising diffusion implicit model, CNN = convolutional neural network, DDPM = denoising diffusion probabilistic model
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do not use techniques for training on small datasets [34] 
and require larger datasets for training [35].

Controllable Image Generation and Manipulation
Generative models can be used to generate samples; 

however, they are often used in combination with other 
techniques such as conditional or controllable generation, 
to produce the desired outcomes. Strict divisions have not 
been made; however, common techniques include conditional 
image synthesis, which generates images of a desired class; 
image editing and manipulation techniques, which transform 
an input image into the desired shape; and image-to-image 
translation (and/or style transfer), which transforms an 
input image into the desired style. The Supplement describes 
the details of conditional image synthesis, image editing 
and manipulation, and image-to-image translation. 

Towards Multimodal Generative AI
Generative AI for medical imaging driven by computer 

vision has made significant strides; however, its practical 
application remains limited. Medical images must be 

analyzed in conjunction with electronic medical records 
(EMRs) and patient demographics in clinical settings. 
Multimodal learning, such as vision-language modeling 
(VLM), offers a solution [36]. 

Multimodal learning employs images generated using 
various methods to process diverse clinical information [2]. 
These models accept and output data in visual and textual 
formats. For instance, a VLM can generate structured reports 
from chest radiographs (CXRs) and create CXR images from 
brief reports [37]. Text-guided image-to-image translation 
[38,39] has been used for cross-modality medical image 
translation [40,41] or anomaly detection via counterfactual 
image generation [42,43]. Multimodal generative AI, 
including VLMs, can overcome the limitations of image-only 
models, representing a significant advancement.

 

Metrics and Methods for Evaluating Generative 
Images

Notably, methods using the human eye, such as the visual 
Turing test and qualitative evaluation, have been used to 

Fig. 3. Schema of the GAN (A) and diffusion models (B). GAN uses a generator and discriminator, whereas diffusion models exhibit gradual 
denoising and image generation steps. GAN = generative adversarial network
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evaluate image-generative AI [44]. However, these methods 
are highly subjective; thus, quantitative metrics that 
can objectively evaluate generative performance must be 
developed. Generative models capable of creating realistic 
samples that reflect real-world data and are sufficiently 
diverse to reflect data distributions must be developed. 
Therefore, two crucial aspects of the generated images, 
fidelity (image quality) and diversity (image variety), are 
assessed by the technical quantitative metrics of image-
generative models. Most metrics are evaluated on a dataset 
basis as the training of a generative model aims to model 
real-world data distributions.

A major challenge associated with the use of generative 
models is the identification of a universal gold standard 
quantitative metric [45,46]. Therefore, technical and 
quantitative metrics commonly used for evaluating image-
generative AI are summarized in this review. Table 1 
summarizes the evaluation metrics of the generated images. 

Traditional Metrics 
 The performance of image-generative AI is quantitatively 

evaluated using traditional metrics such as the peak signal-
to-noise ratio (PSNR) [47] and structural similarity index 
measure (SSIM) [48]. PSNR is defined as ratio of the 
logarithmic value of the maximum possible pixel value in an 
image to the mean squared error of the pixel values between 
the original and compared images. SSIM can capture the 
visual characteristics of human perception. It uses the 
mean, standard deviation, and covariance of two images 
to evaluate the luminance, contrast, and structure of the 
transformed images. The root mean square error between 
the original and transformed images has also been used for 
evaluation. However, traditional metrics evaluate information 
loss during image compression and require original images 
for comparison, thereby limiting their ability to evaluate 
diversity, which is an important feature of generative AI. 
Thus, these metrics are of limited use in tasks such as 
supervised image-to-image translation, wherein absolute 
labels are available and image super-resolution.

Data Distribution Evaluation Metrics 
The inception score (IS) [49] and Fréchet Inception 

distance (FID) [50] are modern quantitative metrics that 
are widely used to evaluate the capability of generative AI 
using the distribution of generated and real images in the 
latent space. A pretrained DL model (e.g., the ImageNet-
pretrained Inception v3 model) has been used to model the 

conditional label distribution of the generated images [51] to 
measure the IS. However, IS can also be measured using the 
Kullback–Leibler divergence and conditional label distribution 
[52]. A higher IS indicates a better performance. A pre-
trained Inception v3 model, which compares real images 
with generated images, has been used to determine FID. 
FID is calculated by comparing the mean and covariance of 
all activation vectors obtained using the inception network 
on the real and generated datasets, with a lower FID score 
indicating better performance.

Precision and recall have also been used to evaluate 
generative models in terms of the distribution of real and 
generated datasets in latent space [53]. Precision is defined 
as the proportion of true positives among those classified 
as positive in diagnostic metrics, whereas recall is defined 
as the proportion of true positives among the total number 
of real positives. In terms of the distribution of the real 
and generated datasets, precision can be expressed as the 
generated data within the real data distribution, whereas 
recall can be expressed as the real data within the generated 
data distribution in the latent space. Thus, precision and 
recall are correlated with the fidelity and diversity of the 
generated images, respectively. A pretrained network that 
embeds all data as latent vectors in the latent space [50] 
and uses the k-means clustering algorithm [54] has been 
used to compare the distributions of the datasets as direct 
estimation of the distribution of real and generated datasets 
is challenging. Studies have been conducted to improve 
the precision and recall, including the density and coverage 
[54,55]. Figure 4 presents the difference between the 
diagnostic and generative precision recall.

Metrics and Methods for Evaluating Downstream 
Applications

Image generative AI enables the use of generated images 
as training AI data for clinical or research purposes. Table 2 
summarizes the common evaluation metrics and methods used 
for downstream applications. Previous studies have detailed 
AI evaluation metrics and methods [56-58]. The visual Turing 
test has been used to verify the realism of images before 
applying AI-generated images as data for model training or 
educational materials. Overlap or distance measures, such as 
Intersection over Union and Dice similarity coefficient (DSC), 
have been used to assess segmentation tasks. A confusion 
matrix and receiver operating characteristic (ROC) curve 
analysis have been used to evaluate classification tasks, 
with the F1 score serving as a harmonic mean of positive 
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Table 1. Metrics for evaluating generated images

Metrics Details Tasks Meaning
Traditional method

PSNR 1. ‌�Ratio between the maximum pixel value and the distorting effect of 
reconstruction

2. Higher PSNR indicates better image quality
3. Does not always correlate with human perception

Supervised image-to-image 
translation

Fidelity 

SSIM 1. ‌�Measure similarity between two images using luminance, contrast, and 
structure

2. Higher SSIM indicates better image quality

Supervised image-to-image 
translation

Fidelity

Data distribution method
IS 1. ‌�A score that measures the fidelity and diversity of generated images 

at once
2. ‌�Calculate KL divergence between the marginal and conditional 

distribution of generated images using pretrained classification model
3. ‌�Higher IS indicates better fidelity and diversity
4. ‌�It can be counterintuitive and fooled based on the pretrained 

classification model
5. Require approximately 5000 images of generated images

1. ‌�Controllable image 
generation

2. ‌�Image editing and image 
manipulation

3. ‌�Supervised and unsupervised 
image-to-image translation

Fidelity and 
diversity 

FID 1. ‌�A score that measures the fidelity and diversity of generated images 
at once compared to real images

2. ‌�Calculate multivariate Gaussian distribution between real and 
generated images using pretrained classification model

3. ‌�Lower FID indicates a more similar distribution between generated and 
real images

4. Result can be biased according to the pretrained classification model
5. Require approximately 50000 samples

1. ‌�Controllable image 
generation

2. ‌�Image editing and image 
manipulation

3. ‌�Supervised and unsupervised 
image-to-image translation

Fidelity and 
diversity

Precision 
  & Recall

1. ‌�Precision measures for fidelity while recall measures for diversity
2. ‌�Precision is calculated by the valid generated samples over all the 

generated samples in the latent space, while recall is calculated by the 
valid generated samples over all the real samples in the latent space

3. ‌�Achieving both high precision and high recall is desirable, but there is 
a trade-off between precision and recall

4. ‌�There exist some variants in precision and recall, such as density and 
coverage

1. ‌�Controllable image 
generation

2. ‌�Image editing and image 
manipulation

Diversity 

PSNR = peak signal-to-noise ratio, SSIM = structural similarity index measurement, IS = inception score, KL = Kullback–Leibler, FID = 
Fréchet inception distance

predictive value and sensitivity. Obtaining false negative 
and true negative rates for detection tasks is challenging; 
therefore, detection sensitivity and false positive rates are 
typically used. ROC analysis involves the calculation of 
localization ROC, free-response ROC (FROC), or alternative 
FROC (AFROC) based on lesion-level sensitivity and false 
positive rates. Table 2 describes each of these measures. 
However, the details of each measure are beyond the scope 
of this article. Previous studies have assessed the methods 
used for clinical evaluation of AI algorithms for medical 
diagnosis [56] and performance metrics of machine learning 
[57,58]. 

Clinical and Research Usage: Approach 1–Direct 
Utilization of Synthetic Images 

Approach 1 utilizes synthetic images, whereas Approach 2 
uses synthetic images as augmented input data along with real 
images to enhance performance in clinical tasks (Fig. 1). GAN 
and diffusion models, two commonly used image-generative AI 
techniques in medical imaging, are illustrated and discussed 
here. Table 3 summarizes the published articles using 
Approach 1 [59-75]. 
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Table 2. Common metrics and methods for downstream applications of AI-generated images

Metrics Details Tasks
Visual Turing’s test 1. ‌�Create mixed dataset of generated and real samples for human raters to 

distinguish between them
2. Highly dependent on the human raters
3. ‌�Realism and 3D continuity of generated samples can be evaluated by human 

raters using Likert scale

Substitution of 
real images 
(e.g., data for 
model training, 
educational use) 

IoU 1. ‌�Measures overlap between the predicted object contour and ground truth 
contour

2. Ranging from 0 (no overlap) to 1 (complete overlap)

Segmentation

DSC Twice the overlapped area between the ground truth and predicted bounding 
boxes divided by sum of their area

ROC Evaluate performance by plotting the true positive rate (sensitivity) against the 
false positive rate (1 - specificity) at various threshold levels 

Classification

Confusion matrix (accuracy, 
sensitivity, specificity, 
F1 score)

1. Accuracy: fraction of correct predictions
2. Sensitivity: fraction of positives correctly predicted 
3. Specificity: fraction of negatives correctly predicted 
4. F1 score: harmonic mean of positive predictive value and sensitivity

Detection sensitivity, false 
positive rates

1. In the detection task setting, false negative and true negative is unknown
2. Sensitivity: fraction of positives correctly predicted 
3. False positives: fraction of negatives incorrectly predicted as positive

Detection

LROC, FROC, AFROC 1. ‌�LROC 
- X-axis: false positive rate (1 - specificity) at the case level 
- Y-axis: ‌�probability of correct localization at the case level or the fraction of 

true positives that correctly hits annotated lesion
2. ‌�FROC 

- X-axis: average number of false positives per case 
- Y-axis: lesion localization fraction or lesion level sensitivity

3. ‌�AFROC 
- X-axis: false positive rate (1 - specificity) at the case level 
- Y-axis: lesion localization fraction or lesion level sensitivity

AI = artificial intelligence, 3D = three-dimensional, IoU = intersection over union, DSC = Dice similarity coefficient, ROC = receiver 
operating characteristic, LROC = localization ROC, FROC = free-response ROC, AFROC = alternative FROC

Fig. 4. Explanation of diagnostic (A) and generative precision-recalls (B). Diagnostic precision is identical to positive predictive 
value, whereas diagnostic recall is identical to sensitivity. Generative precision-recall overlaps with the latent distribution of real data. 
Generative precision indicates the overlap area divided by the latent distribution of generated data, whereas generative recall indicates 
overlap area divided by the latent distribution of real data.

Diagnostic precision-recall Generative precision-recallA B
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Generation of Missing Sequences 
In the big data era, many DL applications are data-hungry 

when training a model. When establishing a DL model for CT 
or MRI, limitations may arise during training due to missing 
data caused by artifacts, variations in image acquisition 
parameters, and time constraints. Generative AI synthesizes 
and fills in the missing data to resolve this limitation. 
An adversarial diffusion model that can generate missing 
images has been used to perform multi-contrast MRI and 
MRI-CT translations [69]. Pelvic MRI to CT image translation 
exhibited superior quantitative and qualitative image quality 
compared with that of conventional diffusion models and 
GANs when applied to MRI sequences, including T1, T2, and 
PD sequences.

A multicenter study on brain tumor imaging demonstrated 
the feasibility of DL-based tumor segmentation by filling 
in of missing sequences [61]. Fluid-attenuated inversion 
recovery (FLAIR) and contrast-enhanced T1-weighted (T1w) 
images play crucial roles in brain tumor segmentation models. 
Synthetic images were obtained using the two GANs to 
generate T1w and FLAIR images from the contrast-enhanced 
T1w and T2w images, respectively (Fig. 5). Transfer learning 
(discussed later) of the DL segmentation was applied using 
these synthesized images. The segmentation results were 
compared with the original data segmentation results without 

missing data. The DSCs for lesion segmentation utilizing 
the generated images were comparable with those of the 
original scans. The median DSCs for the segmentation of the 
whole lesion, FLAIR hyperintensities, and contrast-enhanced 
areas using the generated scans were 0.82, 0.71, and 0.92, 
respectively, on replacing T1w and FLAIR images; 0.84, 0.74, 
and 0.97, respectively, on replacing the FLAIR images only; 
and 0.97, 0.95, and 0.92, respectively, on replacing the T1w 
images only.

The double inversion recovery (DIR) sequence is the most 
sensitive imaging tool for detecting demyelinating plaques 
in multiple sclerosis. However, the acquisition time of DIR 
sequence is longer than that of routine FLAIR owing to 
the presence of two different inversion pulses. DIR images 
can be synthesized from FLAIR in patients with multiple 
sclerosis. Two neuroradiologists demonstrated the improved 
sensitivity of MS plaques in synthetic DIR sequences 
compared with that in FLAIR sequences (P < 0.001) [71]. 

Acquisition of Images in Less Harmful Way 
Patients undergoing imaging studies are exposed to 

radiation and iodinated or gadolinium-based contrast agents 
(GBCAs). Generative AI can generate contrast-enhanced 
images from non-contrast or CT images using MRI images 
without subjecting patients to radiation exposure, thereby 

Fig. 5. Training process of GAN to generate synthetic T1w (A) and FLAIR (B) images. Synthetic images are obtained using two GANs, 
one for generating T1w images from contrast-enhanced T1w images (A) and another for generating FLAIR images from T2w images (B). 
Full volumes of synthetic T1w and FLAIR images are obtained from the test set using trained generators (C). Adapted from Conte et al. 
Radiology 2021;299:313-323, with permission of Radiological Society of North America [61]. GAN = generative adversarial network, T1w = 
T1-weighted, FLAIR = fluid-attenuated inversion recovery, T2w = T2-weighted

T1 model training

Input

T1 Gd

T1 Gd 
volume

T2 
volume

gT1 
volume

gFLAIR 
volume

gFLAIR FLAIR

Trained 
generator

Trained 
generator

Generator Generator

DiscriminatorDiscriminator

OutputOutput

T1

T1gT1

T2 FLAIR

InputTarget Target T1 model

FLAIR model

FLAIR model training Test set predictions

A B C



969

Image Generative Artificial Intelligence in Radiology

https://doi.org/10.3348/kjr.2024.0392kjronline.org

reducing patient risk. 

Reducing the Risk of Radiation
Image-to-image translation involves translating a source 

image into a target image such that certain visual properties 
of the original images are preserved. MRI is non-invasive 
and free of ionizing radiation; thus, previous studies have 
explored image translation from MRI to CT or positron 
emission tomography (PET) imaging and avenues for 
reducing radiation dose from standard to low-dose CT. 

Dedicated breast CT provides images of higher quality 
than mammography and tomosynthesis; however, it 
subjects patients to higher radiation exposure [73]. Cone 
beam breast CT reconstruction involves adapting denoising 
diffusion probabilistic models into a parallel framework. 
The reconstructed images exhibit competitive quality; 
furthermore, the radiation dose is reduced to half or one-
third of the standard radiation dose.

Brain MRI and CT are performed within a short interval 
while planning radiation therapy. MRI provides better soft-
tissue contrast, whereas CT is required for geometrical 
registration. Synthetic brain CT images generated from 
contrast-enhanced T1w MR image inputs using a GAN (Fig. 6) 
[62] exhibit robustness in preserving details and accurately 
presenting the abnormal anatomy. These results indicate 
the potential of using near-real-time MR-only treatment 
planning in the brain. 

MRI and PET provide complementary structural and 
functional information on neurodegenerative diseases. A 
joint probability distribution of a diffusion model (JPDDM) 
was developed using the public Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) public dataset and validated 
to generate synthetic brain PET images from MRI inputs [75]. 

Notably, JPDDM exhibited a higher PSNR and a more accurate 
recovery of PET images from MRI compared with those of 
CycleGAN and score-based diffusion models. A bidirectional 
model using three-dimensional (3D) PET and MR images was 
developed [66] to reconstruct PET images. This framework 
effectively mapped the structural and functional information 
of the brain tissue, and the synthesized images that were 
almost identical to real images. 

Reducing the Risk of Contrast Media 
Iodinated contrast agents (CAs) can cause adverse effects 

such as iodine allergy and pose risks to patients with renal 
insufficiency or serious illnesses. CT angiography, a widely 
used vascular imaging technique, and low-dose CAs have 
been used to mitigate iodinated CA-related adverse effects. A 
GAN-based CT angiography model was developed by training 
GAN to synthesize non-contrast CT images using 1137 CT 
angiography images [67]. The visual quality of synthetic CT 
was comparable with that of real CT, with synthetic images 
exhibiting good diagnostic accuracy for vascular diseases in 
the internal (accuracy 94%) and external test sets (accuracy 
86%). 

Gadolinium deposition has been observed in the brain after 
repeated administration of GBCA. Therefore, the potential 
risks of GBCAs must be weighed against their clinical benefits 
and diagnostic value. The feasibility of synthetic GBCA 
images was tested using a conditional GAN (cGAN) that 
performed brain multimodal imaging of T1w, T2w, T2*w, 
diffusion weigted imaging (DWI), and arterial spin labeling 
(ASL) images to create contrast-enhanced T1w images. This 
GAN used two attention U-Net blocks as generators [76]. 
Synthetic images demonstrate contrast enhancement in the 
small vessels and lesions. 

Fig. 6. Generated brain three-dimensional CT image from brain MRI using generative adversarial network. Simulation CT is mandatory for 
patients with brain metastasis undergoing radiosurgery. Generated brain CT can mitigate radiation dose risk. Adapted from Emami et al. Med 
Phys 2018;45:3627-3636, with permission of John Wiley and Sons [62]. CT = computed tomography, MRI = magnetic resonance imaging 
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Generation of Better-Quality Images
Challenges such as patient motion, prolonged imaging 

acquisition times, and increased radiation dose have posed 
difficulties in acquiring high-resolution CT and MRI images. 
Generative AI research aims to overcome the trade-off 
between spatial and temporal resolution [60,64,72,74,77]. 
High quality images can also be obtained by generating 
bone-suppressed images from the original images [59]. 

Application of super-resolution to low-resolution MR or 
CT images has demonstrated improvements in image quality 
and time efficiency. Consequently, this field has been 
combined with supervised learning (not image-generative 
AI), including CNN and U-Net. Hybrid models combining 
supervised and unsupervised learning have been studied 
[74]; for instance, a hybrid super-resolution reconstruction 
model based on GANs and U-net was developed by 
combining the frequency domain and perceptual loss 
functions in a previous study. Application to bladder MR, 
brain MR, and abdominal CT images resulted in better image 
quality, PSNR, and SSIM of the reconstructed images across 
the different datasets.

Score-based diffusion models [60,77] trained on public 
knee fast MRI data for MRI reconstruction tasks have 
demonstrated the feasibility of achieving higher resolution. 
These model used various sampling methods and body 
parts, not just training data, to generate images from the 
subsampling data, indicating practicality. The PSNR and 
SSIM of the synthetic images were superior to those of the 
images generated using other DL-based image reconstruction 
methods. Transfer learning was applied to pathology 
detection using YOLOv5 after image generation [77]. 
Notably, synthetic super-resolution images performed better 
than U-net-based synthetic images or ground-truth high-
resolution images. 

Super-resolution images were considered to depict small 
vascular structures. High-resolution (1 mm) brain time-of-
flight (TOF) MR angiography (MRA) was generated using 
a GAN-based model [72] with low-resolution (4 mm) TOF-
MRA image inputs. Synthetic MRA exhibited a significant 
improvement in terms of image quality. Moreover, the 
vessel visibility scale rated by radiologists was higher (P < 
0.001) than that of low-resolution input images. Synthetic 
MRA images have exhibited sensitivities and specificities 
comparable with those of routine high-resolution MRA images 
in terms of diagnostic performance for lesion detection. 
Similarly, a GAN has been used to generate high-resolution 
synthetic images for motion-compensated isotropic 3D 

coronary MRA (CMRA) [64]. Significant improvement in vessel 
sharpness has been observed with the use of high-resolution 
synthetic MRA (34.1% ± 12.3%). Specifically, a 16-fold 
increase in spatial resolution (isotropic 0.9 mm3 or 1.2 mm3 
from anisotropic 0.9 x 3.6 x 3.6 mm3 or 1.2 x 4.8 x 4.8 mm3) 
compared with that of low-resolution CMRA was observed. 
The reconstructed images exhibited a 16-fold increase in 
spatial resolution when using low-resolution CMRA, and 
the image quality was comparable with that obtained using 
high-resolution CMRA. 

Clinically useful and higher-quality images can be 
obtained by subtracting the bone from CXR images, 
mimicking the dual-energy technique [59]. This study 
aimed to validate the effectiveness of GAN-based bone 
suppression and the dual energy technique in pulmonary 
nodule detection compared with that of standard CXRs and 
compare the performance of the two techniques. Compared 
with that of standard CXR, the area under the AFROC curve 
(AUAFROC) of GAN-based bone suppression was significantly 
higher for readers (GAN vs. standard, AUAFROC of 0.981 vs. 
0.907 [reader 1] and 0.958 vs. 0.808 [reader 2], P < 0.01). 
Furthermore, this method demonstrated a performance 
comparable with that of the dual-energy technique.

Reduction of Inter-Vendor Variation by Style Transfer 
Applying radiomics to DL models aids in diagnosis and 

prediction using noninvasive tissue phenotyping. However, 
radiomic features may not be reproducible if the imaging 
acquisition parameters, manufacturers, and reconstruction 
algorithms vary [78-82]. 

The potential utility of generative AI in enhancing 
reproducibility has been suggested through image 
conversion across different manufacturers, CT protocols, 
and reconstruction algorithms. A study [63] included CT 
images using scanners from four manufacturers, standard- 
or low-radiation doses, and sharp or medium kernels, and 
classified them into groups 1–7 according to acquisition 
conditions. CT images were converted into the target CT 
style (Group 1: standard dose and sharp kernel) using a 
RouteGAN. CT conversion improved the radiologists’ scores 
for fibrosis, honeycombing, and reticulation and made the 
scores less variable compared with the original images.

Quantitative radiomics features of texture features in 
CXRs were compared between original images from two 
manufacturers and GAN converted images (Fig. 7) [68]. 
The reproducibility, evaluated using the concordance 
correlation coefficient (CCC), increased to 72.8% and 79.3% 
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(with a CCC threshold of 0.80) in each manufacturer after 
texture translation. Additionally, a classifier trained on 
translated CXRs showed increased accuracy, from 55.0% to 
64.5%, in discriminating congestive heart failure (CHF) from 
non-CHF CXRs. 

Another study developed an image conversion model 
to reproduce radiomic features across CT protocols and 
reconstruction kernels using an abdominal phantom with 
liver nodules [65]. For region of interest (ROI)-based 
analysis, they obtained 96 pairs of CCC from three categories 
of radiomics features, eight protocols, and 4 ROIs; similarly, 
for radiomic feature-based analysis, 6192 pairs of CCC were 
generated from 774 radiomics features and eight protocols. 
The results showed increased CCC in synthetic image pairs 
compared to the original images, specifically 83.3% (80/96) 
and 62.0% (3838/6192) in the ROI- and radiomic feature-
based analysis, respectively. 

Concerns With Direct Utilization of Generated/Synthetic 
Images and Potential Strategies to Mitigate Concerns

Image generative AI transforms images from one domain 
to another with “unpaired” images. This distinguishes image 
generative AI from CNN or U-net, which requires paired 
images for image translation. Therefore, in the clinical realm, 
caution is needed. The generated images may look like real 
images, but the specific images of an actual patient are not 
assumed to be similar to the generated images [83]. 

A recent survey of hallucinations in large foundation 
models [84] broadly classified them into four types: text, 
image, video, and audio. The presence of a sufficient 
number of positive pairs and ample variation mitigates 
hallucinations in image-generative AI. GANs can create 
artifacts or unnatural images [85]; notably, cycle-consistent 

GANs trained with unpaired data are particularly susceptible 
to these risks. Figure 8 presents the creation of unnatural 
images using the GAN. Sandfort et al. [83] reported the 
generation of unnatural images while generating virtual 

Fig. 7. Improved reproducibility of radiomics features obtained from chest radiographs. A: Style transfer among different manufacturers was 
performed to generate vendor-translated images using GAN. B: Radiomic features were extracted. C: The feature reproducibility improved 
significantly when calculating concordance correlation coefficient. Adapted from Marcadent et al. Radiol Artif Intell 2020;2:e190035, 
with permission of Radiological Society of North America [68]. Philips DD and Siemens FCFD. GAN = generative adversarial network, DD = 
DigitalDiagnost, FCFD = Fluorospot Compact FD, n = native, f = fake

Fig. 8. Image hallucination and introduction of new features by 
generative adversarial network. A: T2/FLAIR image shows the 
open rim-like structure (arrow), which is semantically unnatural. 
B: Checkerboard-like artifact (arrow) is seen on the contrast-
enhanced image. C: Bizarre enhancement (arrow) is seen at the 
anterior aspect.

GAN texture-translation Radiomic features extraction Reproducibility analysis

A B C

A

B

C
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non-contrast images from contrast-enhanced images using 
a cycleGAN. The output images synthesized from virtual 
non-contrast exhibited a metal clip that did not exist or 
a hyperdense aorta as if contrast media were injected, 
leading to the introduction of new features. Moreover, unlike 
“real” virtual non-contrast images, which enable physical/
mathematical modeling of radiation absorption, synthesized 
images cannot be used as a tool for physically measuring 
tissues. Thus, it was concluded that image generation AI 
is not a magical tool but a sophisticated type of “style 
transfer.” Synthetic non-contrast CT images can strengthen 
data augmentation methods, but are unsuitable for actual 
measurements or diagnostic purposes.

Diffusion models, in contrast, are a class of likelihood-based 
models that produce high-quality images [31,86-88] and 
possess advantages such as excellent distribution coverage, 
step-by-step training, and easy scalability. A comparative 
study between the GAN and diffusion models [31] revealed 
that the diffusion models exhibited reduced trade-offs between 
fidelity and diversity. However, it is unclear whether latent 
representations from diffusion models are semantically 
meaningful or have fewer false latent representations 
(new features). Nevertheless, the high fidelity and easy 
scalability of diffusion models reduces artifacts and prevents 
the creation of unnatural images (hallucinations).

Hallucinations are mitigated using the same rule for all 
generative AI models [89]. First, the input data quality 
is improved, and the models are trained on diverse and 
balanced datasets as the generative AI models feed on the 
data. Second, radiologists with domain expertise evaluate 
the image quality, semantic features of the disease, and 
the presence of artifacts obtained from generative images 
thereby incorporating human-in-the-loop validation. 
Third, rigorous testing, continuous iterations, and model 
refinement are performed to test the clinical scenarios. 

Clinical and Research Usage: Approach 2– 
Generated Images to Augment Data for AI 
Training 

Obtaining sufficient data for developing DL models 
is challenging owing to the less frequent occurrence of 
abnormal cases. A new dataset is generated by applying 
rotations, flipping, and translations to existing data to 
overcome data sparsity; however, this approach can result in 
overfitting. Generative AI can generate infinite images for use 
as completely new input data, thereby enhancing the model 

performance in terms of lesion detection, segmentation, 
diagnosis, and classification. Table 4 summarizes the articles 
published using Approach 2 [43,70,83,90-96].

Improvement of Lesion Detection by Generating 
Pathologic Conditions or Pseudo-Healthy Images

GAN can be used to generate images of pathological areas 
or regions of interest. Lung nodules were synthesized on 
3D chest CT images using a cGAN in a previous study [92]. 
The peripheral edge was smoothened to create realistic 
and natural-looking nodules, and the lung nodules were 
distributed from the center to the periphery. Notably, 
compared with that of previous conventional data 
augmentation, cGAN exhibited improved performance for 
detecting pathological lungs, particularly in the detection of 
peripheral lung nodules. 

Similarly, the detection of brain metastases can be 
improved through lesion augmentation using generative AI. 
The detection algorithm with YOLOv3 exhibited a significant 
improvement in performance compared with that of training 
using real images only when the bounding box for detection 
and randomly shaped tumors were generated simultaneously 
using GAN [91]. The sensitivity improved from 67% to 
77% (training with 2813 real images vs. +4000 GAN-based 
augmented images); however, the number of false positives 
per slice also increased from 4.11 to 7.65, which was 
considered clinically acceptable. 

Several studies have demonstrated the utility of generative 
AI in generating synthetic pseudo-healthy images from 
diseased images, eventually generating anomaly maps based 
on the differences between the synthetic and generated 
images. Pseudo-healthy images were applied to brain MR 
sets and CXR images using denoising diffusion implicit 
models [96] in a previous study to improve tumor and 
pleural effusion detection, respectively. Detail-consistent 
image-to-image translation was performed without altering 
the architecture or training procedure to create a qualified 
anomaly map. Bercea et al. [90] created pseudo-healthy 
images from diseased input using an auto-de-noising 
diffusion probabilistic model trained on two public datasets 
of healthy brain MR images. Compared with classical 
diffusion models without explicit noise level tuning, the 
model applied to a public dataset for detecting ischemic 
infarct lesions demonstrated significantly higher robustness. 
The area under the precision-recall curve increased from 4.25 
to 14.48, and the maximum Dice coefficient increased from 
8.39 to 22.75. 
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The clinical implications were demonstrated through the 
automatic creation of an anomaly map. Pseudo-healthy 
images were generated using actual brain CT images of 
patients who visited the emergency room [43]. A style-based 
GAN was developed to create synthetic normal-looking images 
by training over 34085 brain CT images of healthy individuals. 
An anomaly detection algorithm (ADA) that determines 
critical findings based on the discrepancy between real and 
synthetic images was developed (Fig. 9). ADA achieved an 
area under the curve (AUC) of 0.85 and 0.87 in the internal 
and external validation datasets, respectively. In addition, 
ADA triage was performed to change the radiologists’ cues 
for reading and wait times in the clinical simulation test. 
Notably, the turnaround and reading times were significantly 
reduced following the implementation of ADA. 

Improvement of Segmentation
Several studies have demonstrated the potential utility 

of augmented data in enhancing segmentation tasks. An 
ensemble diffusion model was developed for semi-supervised 
image segmentation and domain generalization in one 
study [95]. The DSCs of the model trained on a public CXR 
image dataset for lung segmentation exhibited equivalent or 
significantly increased values: the mean DSCs for the fully 
supervised model, original label efficient diffusion model 
(LEDM), LEDM trained with diffusion steps (LEDMe), and 
ensemble diffusion model were 0.973, 0.970, 0.976, and 
0.973, respectively, for the in-domain test set and 0.941, 
0.944, 0.953, and 0.951, respectively, for the out-of-domain 
test set. 

Sandfort et al. [83] studied the segmentation 
characteristics of the generated images in an abdominal 
CT study. Synthetic non-contrast CT images were generated 
from enhanced CT image inputs, and the segmentation 
performance of the model trained on real datasets was 
compared with that of the model trained on combined 
datasets. The combined dataset included the original 
contrast CT dataset (in-distribution) and a second dataset 
from a different hospital comprising only non-contrast 
CT images (out-of-distribution). The model for kidney 
segmentation trained using a synthetic augmented dataset 
exhibited a significant improvement in out-of-distribution 
performance compared with that of the model trained on 
contrast-enhanced images (with a Dice index of 0.09 to 0.66, 
P < 0.001). The improvements observed in liver and spleen 
segmentation for the model trained with generated images 
were smaller than those for the models trained with real 
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data, with the Dice index from 0.86 to 0.89 and 0.65 to 0.69, 
respectively.

A DL segmentation model for brain tumors was tested to 
further investigate the clinical application. Preetha et al. 
[70] developed a generative AI model to create synthetic 
contrast-enhanced T1w images from non-contrast T1w image 
inputs for enhanced segmentation and volume calculations. 
Contrast-enhanced T1w synthetic images were created using 
T1w, T2w, FLAIR, and ADC images. Notably, segmentation of 
the contrast-enhancing tumor from synthetic post-contrast 
T1w images yielded high CCC (0.782, 0.751–0.807, P < 
0.001) with true tumor volume; however, it yielded a slightly 
underestimated median tumor volume of -0.48 cm3 (-0.37 
to -0.76). Moreover, tumor response was evaluated via 
segmentation of contrast-enhancing tumors and volumetric 
assessment. The calculated hazard ratio for survival 
exhibited no significant difference when compared with real 
contrast-enhanced images.

Improvement of Diagnosis and Classification
Synthetic images with pathologic conditions/lesions can 

be utilized as an augmented dataset to develop statistical 

or DL-based diagnostic models that are particularly effective 
for rare diseases. In the diagnosis and prognosis prediction 
of brain gliomas, confirming the isocitrate dehydrogenase 
(IDH) mutation status is essential. Several studies have 
focused on using MR phenotyping to predict mutations 
non-invasively. However, gathering a sufficient number of 
patients is challenging owing to the rarity of this condition. 
The following studies generated MR images of IDH mutant or 
wild-type gliomas and used them for model development to 
address the insufficient data. 

Park et al. [94] used the World Health Organization 2016 
classification to generate synthetic images using GAN for 
IDH-mutant glioblastoma, a rare subtype. Diagnostic models 
for predicting IDH mutations have been developed using 
real IDH-wild-type and IDH-mutant glioblastomas, synthetic 
IDH-mutant glioblastomas, or both. The diagnostic accuracy 
of the synthetic image-augmented model was significantly 
higher than that of the real model. A multivariable diagnostic 
model using real and synthetic data exhibited slightly higher 
predictive performance than that of a model based solely on 
real images when applied to the test set (AUC of reader 1: 0.75 
and 0.71, and AUC of reader 2: 0.82 and 0.77). 

Fig. 9. Anomaly detection map and anomaly score of brain CT can be calculated using style-based generative adversarial network by 
generating pseudo-healthy CT images. Subtracting the real CT images from the generated pseudo-healthy CT images can create an 
anomaly detection map. Adapted from Lee et al. Nat Commun 2022;13:4251, with permission of Springer Nature BV [43]. CT = computed 
tomography, FC = fully connected layer
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Moon et al. [93] used score-based diffusion models to 
generate synthetic images of IDH-mutant and wild-type 
gliomas. Notably, the diffusion models generated images by 
imaging phenotypes from small sizes with no enhancement 
to large sizes with predominant enhancement (Fig. 10). These 
synthetic images were augmented into a training dataset 
to develop a DL model for classifying the status of IDH 
mutation. Optimal augmentation was achieved with 110000 
generated slices, with an AUC of 0.938. The augmented 
diagnostic model exhibited a significant improvement over 
neuroradiologists in classifying the types of IDH in internal 
and external test sets (AUC of the model: 0.94 and 0.83, AUC 
of reader 1: 0.86 and 0.82, and AUC of reader 2: 0.79 and 0.74 
in the internal and external test sets, respectively).

Concerns With the Utilization of Generated Images as 
Augment Data for AI Training

Augmenting training data with generative AI can improve 
downstream AI models; however, several concerns remain. 
First, the quality of the models depends on the accuracy 
and diversity of the training data from the generative AI, 
which is crucial. The current metrics for evaluating the 
diversity of generative AI are limited, particularly in terms 
of diagnostics [46]. A recent study that tested the imaging 
feature diversity with human readers has proposed a possible 
method for assessing the diversity of the generated imaging 
phenotypes. Second, evidence for optimizing the number 
and ratio of generated images for downstream AI models is 
insufficient. Various ratios of real to synthetic images must 
be tested to identify optimal conditions for a broad range 
of medical applications [97]. Third, generative AI lacks 
transparency and the process of combining image-generative 

Fig. 10. Score-based diffusion model generates scalable imaging phenotypes of diffuse adult-type glioma in the brain. The size and 
contrast enhancement vary and are scalable in IDH-wild and IDH-mutant types, providing realistic and natural images. Adapted from 
Moon et al. Neuro Oncol 2024;26:1124-1135, with permission of Oxford University Press [93]. IDH = isocitrate dehydrogenase, FLAIR = 
fluid-attenuated inversion recovery, CE-T1WI = contrast-enhanced T1-weighted imaging
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AI with its training processes for downstream models further 
complicates this issue. The types of data used and their 
applications in the training of generative AI models remain 
unclear. Thus, it is recommended to test the quality and 
accuracy of the outputs from generative AI models and 
continuously monitor and adjust the performance of the 
downstream model to address this issue.

CONCLUSION

This article summarizes image-generative AI techniques 
employed in radiology. Categorizing clinical and research 
applications into two approaches has helped provide an 
overview of the myriad studies on generative AI techniques. 
The first approach involves the direct utilization of the 
generated images. The second approach involves the use 
of the generated images as training data for AI models to 
perform downstream supervised DL tasks. Image-generative 
AI produces synthetic data with a broad range of clinical 
and radiological potential by providing high-quality images, 
filling in missing sequences, creating images through less 
harmful processes, reducing inter-vendor variability, and data 
augmentation for training AI to perform various tasks, such 
as (anomaly) detection, segmentation, and classification. 
The evolving evaluation metrics of image-generative AI have 
become increasingly important in evaluating the fidelity, 
diversity, and semantic features of the generated images 
by humans. Image hallucinations and the introduction of 
new features must be carefully evaluated. Future DL studies 
should aim to adopt image-generative AI to improve a 
broad range of image-based tasks. This will help overcome 
concerns regarding small datasets in the medical field. 
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