DOI QR코드

DOI QR Code

Experimental study on the mechanical behaviors of rigid pile composite foundation in Yellow River alluvial plain upon ground water level fluctuations

  • Received : 2021.06.24
  • Accepted : 2024.09.16
  • Published : 2024.11.10

Abstract

In recent years, the increasingly frequent extreme weather conditions in Yellow River Alluvial Plain (YRAP) like heavy rains and drought have resulted in significant Ground Water Level (GWL) fluctuations. After long-distance transportation by Yellow River, the silt in this area gains characteristics of high particle roundness and poor grain gradation, which makes it sensitive to the changes of water content. Consequently, upon GWL fluctuations, the bearing behaviors of Rigid Pile Composite Foundation (RPCF) gradually deteriorate and result in additional settlement. In order to investigate the changing disciplines and inherent mechanisms of the RPCF bearing behaviors upon GWL fluctuations, a large-scale model test was performed and presented. The experimental results suggest that RPCF settlement experiences a sudden increase in the first GWL fluctuation cycle and then gradually stabilizes in the following cycles. Such phenomenon could be attributed to the soil structure rearrangement induced by matric suction reduction in the GWL rise process and growth of effective stress in the GWL drop process. Further, considering the soil stiffness deterioration in the GWL rise process, the traditional composite modulus method for RPCF settlement estimation was modified to extend its application in unsaturated YRAP. The changing disciplines, mechanisms and estimation method presented can facilitate practicing engineers to gain a more comprehensive understanding on the bearing behaviors of RPCF in YRAP upon GWL fluctuations.

Keywords

Acknowledgement

The first author, Yunlong Liu, thanks the department of Science and Technology of China for funding the project entitled "Research on lateral earth pressure of expansive soil upon wetting considering the cumulative damage effect of drywet cycles"-Fund code: 42107196 for the period 2022-01 to 2024-12.

References

  1. Adem, H.H. and Vanapalli, S.K. (2015), "Prediction of the modulus of elasticity of compacted unsaturated expansive soils", Int. J. Geotech. Eng., 9(2), 163-175. https://doi.org/10.1179/1939787914y.0000000050.
  2. Ajdari, M. and Esmail, A.P. (2015), "Experimental evaluation of the influence of the level of the ground water table on the bearing capacity of circular footings", Iranian J. Sci. Tech. Transact. Civil Eng., 39(2), 497-510. https://doi.org/10.22099/IJSTC.2015.3516.
  3. Alencar, A., Galindo, R. and Melentijevic, S. (2021), "Influence of the groundwater level on the bearing capacity of shallow foundations on the rock mass", Bull. Eng. Geol. Environ., 80(9), 6769-6779.
  4. An, L.Z., Quan, S. and Xu, Y. (2013), "Dynamic characteristics of the shallow groundwater table and its genesis in the Yellow River Delta", Environ. Sci. Technol., 36(9), 51-56.
  5. ASTM (American Society for Testing and Materials). (2010), "Standard test methods for liquid limit, plastic limit, and plasticity index of soils", ASTM D4318-10ε1, ASTM international, West Conshohocken, Pa.
  6. ASTM (American Society for Testing and Materials). (2012), "Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3(600 kN-m/m3))", D698-12ε2 , ASTM international, West Conshohocken, Pa.
  7. ASTM (American Society for Testing and Materials). (2014), "Standard test methods for specific gravity of soil solids by water pycnometer", ASTM D854-14, ASTM international, West Conshohocken, Pa.
  8. ASTM (American Society for Testing and Materials). (2016), "Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge", ASTM D6836-16, ASTM international, West Conshohocken, Pa.
  9. Ausilio, E. and Conte, E. (2005), "Influence of groundwater on the bearing capacity of shallow foundations", Can. Geotech. J., 42(2), 663-672. https://doi.org/10.1139/t04-084.
  10. Bie, Y.S., Liu, M.Y. and Zhang, Q. (2014), "Numerical and stress analysis of composite foundation with long and short piles for the Hong Kong-Zhuhai-Macao bridge", J. Wuhan Univ. Tech., 36(5), 101-105.
  11. Cai, J., Du, G., Xia, H. and Sun , C. (2021), "Model test and numerical simulation study on bearing characteristics of pervious concrete pile composite foundation", KSCE J. Civil Eng., 25(10), 3679-3690. https://doi.org/10.1007/s12205-021-1522-7.
  12. Chen, J., Chen, W., Zhang, K. and Li, L. (2019), "The application of CFG pile composite foundation in the reconstruction of the Dujiangyan", IOP Conference Series: Earth and Environmental Science, vol. 300, Article ID 022159. https://doi.org/10.1088/1755-1315/300/2/022159.
  13. Cheng, Z. and Deng, Y. (2020), "Bearing characteristics of moso bamboo micropile-composite soil nailing system in soft soil areas", Adv. Mater. Sci. Eng., 2020, 1-17. https://doi.org/10.1155/2020/3204285.
  14. Cheng, R.M. (2001), "Review article: Silt and the future development of China's Yellow River", Geograph. J., 167(1), 7-22. https://doi.org/10.1111/1475-
  15. Dong, R. (2016), "Analysis of influence of groundwater level change on vertical bearing capacity characteristic value of CFG single pile", M.S. thesis, Zhengzhou University, Zhengzhou, China.
  16. Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Can. Geotech. J., 31(4), 521-532. https://doi.org/10.1139/t94-061.
  17. Fan, W.Y. (2007), "Research on experiments for silt engineering characteristic sat inundated area", Railway Investigation Survey, 33(6), 14-17.
  18. Fu, L. (2019), "Study on influence of groundwater level change on pile foundation of high-speed railway viaduct", M.S. thesis, Zhejiang University, Hangzhou, China.
  19. Fu, Q. and Li, L. (2020), "Vertical load transfer behavior of composite foundation and its responses to adjacent excavation: centrifuge model test", Geotech. Test. J., 44(1). https://doi.org/191-204.10.1520/gtj20180237.
  20. Guo, Y., Lv, C., Hou, S. and Liu, Y. (2021), "Experimental study on the pile-soil synergistic mechanism of composite foundation with rigid long and short piles", Math. Probl. Eng., 1-15. https://doi.org/10.1155/2021/6657116.
  21. Hamid, T. B. and Miller, G.A. (2009), "Shear strength of unsaturated soil interfaces", Can. Geotech. J., 46(5), 595-606. https://doi.org/10.1139/t09-002.
  22. Hansen, B., Denver, H. and Petersen, K. (1987), "The influence of groundwater on bearing capacity of footings", Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering, Dublin, Ireland, August/September 1987.
  23. Jin, Q., Zheng, Y., Cui, X., Cui, S., Qi, H., Zhang, X. and Wnag, S. (2020), "Evaluation of dynamic characteristics of silt in Yellow River Flood Field after freeze-thaw cycles", J. Central South Univ., 27(7), 2113-2122. https://doi.org/10.1007/s11771-020-4434-7.
  24. Kumar, J. and Chakraborty, D. (2013), "Bearing capacity of foundations with inclined groundwater seepage", Int. J. Geomech., 13(5), 611-624. https://doi.org/1943-5622.0000241.
  25. Lang, R., Xiong, H., Sun, L. and Yadong, Z. (2021), "A simplified prediction method for additional stress on underlying layer of rigid pile-net composite foundation", Eur. J. Environ. Civil Eng., 1-20. https://doi.org/10.1080/19648189.2021.1916603.
  26. Li, M., Li, Y.H.., Lv, M.F. and Guo, Y.C. (2022), "Comparative shear test study on silt-concrete interface and silt", Chinese J. Undergr. Sp. Eng., 18(1), 171-178.
  27. Liu, B.S., Zhang, Y.J. and Wang, X. (2016), "Analysis on influencing factors of collapsibility of artificially prepared sand", J. Railway Sci. Eng., 13(10), 1933-1939.
  28. Liu, P., Yang, G.H., Fan, Z. and Sun, Y.C. (2016), "Cushion effects on the bearing gapacity behaviors of the rigid pile composite foundation", J. Civil Eng. Management, 32(2), 13-18.
  29. Liu, P., Yang, G.H. and Fan, Z. (2016), "Experimental study on size effect of rigid pile composite foundation", J. Rock Mech. Geotech. Eng., 35(1), 187-200.
  30. Lu, D., Li, X., Du, X., Lin, Q. and Gong, Q. (2020). "Numerical simulation and analysis on the mechanical responses of the urban existing subway tunnel during the rising groundwater", Tunn. Undergr. Sp. Tech., 98, 103297. https://doi.org/10.1016/j.tust.2020.103297.
  31. Luo, F.R., Liu, C.W. and Han, X. (2011), "Influence of groundwater level rise on subway tunnel structure", China Railway Sci., 32(1), 81-85.
  32. Li, Y., Lei, X.W., Meng, Q.S., Chen, J. and Zhang, L. (2018), "Experimental study on shear strength of remolded basalt residual soil", J. Hefei Univ. Tech. (Natural Science), 41(2), 240-244+265.
  33. Ma, T.Z., Zhu, Y., Yang, X. and Ling, Y. (2018), "Bearing characteristics of composite pile group foundations with long and short piles under lateral loading in loess areas", Math. Probl. Eng., 2018.
  34. National standard of the people's republic of China (JGJ 79-2012). (2012), Technical code for ground treatment of buildings. China Architecture & Building Press.
  35. Noman, B.J., Abd-Awn, S.H. and Abbas, H.O. (2019), "Effect of pile spacing on group efficiency in gypseous soil", Civil Eng. J., 5(2), 373-389.
  36. Oh, W.T., Vanapalli, S.K. and Puppala, A.J. (2009), "Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils", Can. Geotech. J., 46(8), 903-914. https://doi.org/10.1139/t09-030.
  37. Oh, W.T. and Vanapalli, S.K. (2010), "Influence of rain infiltration on the stability of compacted soil slopes", Comput. Geotech., 37(5), 649-657. https://doi.org/10.1016/j.compgeo.2010.04.003.
  38. Pan, M. (2018), "Experimental study on shear strength characteristics of typical loess in Taiyuan", M.S. thesis, Taiyuan University of Technology, Taiyuan, China.
  39. Park, D., Kim, I. and Kim, G. (2017), "Groundwater effect factors for the load-carrying behavior of footings from hydraulic chamber load tests", Geotech. Test. J., 40(3), 440-451.
  40. Park, D., Kim, I., Kim, and G. and Lee, J. (2019), "Effect of groundwater fluctuation on load' carrying performance of shallow foundation", Geomech. Eng., 18(6), 575-584. https://doi.org/10.1520/gtj20160078.
  41. Reddy, A.S. and Manjunatha, K. (1997), "Influence of water table on bearing capacity of adjacent strip footings on sand exhibiting anisotropy", Soil Found., 37(1), 53-64. https://doi.org/10.3208/sandf.37.53.
  42. Safarzadeh, Z. and Aminfar, M.H. (2019), "Experimental and numerical modeling of the effect of groundwater table lowering on bearing capacity of shallow square footings", Int. J. Eng., 32(10), 1429-1436. https://doi.org/10.5829/ije.2019.32.10a.12.
  43. Schnellmann, R., Rahardjo, H. and Schneider, H.R. (2013), "Unsaturated shear strength of a silty sand", Eng. Geol., 162, 88-96. https://doi.org/10.1016/j.enggeo.2013.05.011.
  44. Sharma, B., Sarkar, S. and Hussain, Z. (2019), "A study of parameters influencing efficiency of micropile groups", Ground Improvement Techniques and Geosynthetics. Springer, Singapore, 11-18. https://doi.org/10.1007/978-981-13-0559-7_2.
  45. Song, X.G., Zhang, H.B., Wang, S.G., Jia, Z.X. and Guan, Y.H. (2010), "Hydrophilic characteristics and strength decay of silt roadbed in Yellow River alluvial plain", Chinese J. Geotech. Eng., 32(10), 1595-1602.
  46. Sun, X.H. (2010), "Effect of foundation rigidity and cushion thickness on rigid pile Composite Foundation bearing capacity", MS thesis, China Academy of Building Research, Beijing, China.
  47. Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E. and Clifton, A.W. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.
  48. Vanapalli, S.K. and Mohamed, F.M.O. (2007), "Bearing capacity of model footings in unsaturated soils",. In proceedings, International Conference "From Experimental Evidence towards Numerical Modeling of Unsaturated Soil", Weimar, Germany, unsaturated Soils: Experimental Studies: 483-493. https://doi.org/10.1007/3-540-69873-6_48.
  49. Veiskarami, M. and Kumar, J. (2012), "Bearing capacity of foundations subjected to groundwater flow", Geomech. Geoeng., 7(4), 293-301. https://doi.org/10.1080/17486025.2011.631038.
  50. Sharma, V.J., Vasanvala, S.A. and Solanki, C.H. (2015), "Study of cushioned composite piled raft foundation behaviour under seismic forces", Aust. J. Civil Eng., 13(1), 32-39. https://doi.org/10.1080/14488353.2015.1092636.
  51. Wang, W.L., Wang, X.M. and Ma, X. (2015), "Experimental study on influence of groundwater on loess pile group foundation", China J. Highway Transport, 28(9), 16-23.
  52. Wu, S.W., Zhu, Z.D. and Zhang, A.J. (2016), "Research on the equivalent solid side friction resistance of rigid pile compositefoundation", Henan Sci., 34(2), 238-242.
  53. Xiao, J.H., Liu, J.K. and Peng, L.Y. (2008), "Influence of density and moisture content of alluvial silt on mechanical properties of Yellow River", Rock Soil Mech., 146(2), 409-414.
  54. Xu, A.Q., Yue, J.W. and Song, D. (2017), "Research on compression modulus and effective stress parameter of unsaturated silt in the Yellow River flood area", Chinese J. Appl Mech., 34(4), 672-678.
  55. Xu, S.J. (2020), "Experimental study on pile-soil load sharing of rigid pile composite foundation under different side load conditions", M.S. thesis, China Academy of Building Research and Tsinghua University, Beijing, China.
  56. Yang, D.J. and Wang T.C. (2010), "Research on settlement mechanism and influence factors of rigid pile composite foundation", Eng. Mech., 27(1), 150-163.
  57. Yao, Z.Y. (2006), "Engineering properties on Yellow River alluvialplain soil", MS thesis. Tianjin University, Tianjin, Beijing.
  58. Yu, J. (2022), "Modeling between water resources security and regional economic growth in the Yellow River basin based on entropy weight method-a case study for future smart city", J. Test. Evaluation, https://doi.org/10.1520/jte20220053.
  59. Zhang, D., Zhang, Y., Kim, C.W., Meng, Y., Garg, A. and Fang, K. (2018), "Effectiveness of CFG pile-slab structure on soft soil for supporting high-speed railway embankment", Soils Found., 58(6), 1458-1475. https://doi.org/10.1016/j.sandf.2018.08.007.
  60. Zhang, Y., Zhou, L.P., Wang, M.Y., Ding, X. and Wang, C. (2021), "Experimental study on the negative skin friction of the pile group induced by rising and lowering the groundwater level", Adv. Civil Eng., 2021. https://doi.org/10.1155/2021/2574727.
  61. Zhang, Y.P., Tang, Y.Q. and Xu, J. (2017), "Deformation and settlement mechanism of silt under cyclic water level fluctuation", J. Tongji Univ. (natural science), 45(12), 1773-1782.
  62. Zhao, X. (2014), "The influence of water level change on the dynamic characteristics and cumulative deformation characteristics of high-speed railway subgrade", M.S. thesis, Zhejiang university, Nanjing, China.