• Title/Summary/Keyword: rigid pile composite foundation

Search Result 5, Processing Time 0.25 seconds

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

A foundation treatment optimization approach study in hydraulic engineering

  • Zhang, Tianye;Liu, Shixia
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.215-225
    • /
    • 2018
  • To reach a better foundation treatment project, an optimized analysis of composite foundation was studied in the field of hydraulic engineering. Its unique characteristics in hydraulic engineering were concluded. And, the overall and detailed analysis of the composite foundation model established was carried out. The index parameters of the vertical reinforced rigid pile composite foundation were formulated. Further, considering the unique role of cushion in hydraulic engineering, its penetration and regularity were analyzed. Then, comparative and optimized analyses of cushion multistage physical dimensions and multistage material characteristics were established. The parameters of the piles distance were optimized and the multilevel scientific and reasonable parameters information was obtained. Based on the information of these parameters, the practical application was verified. It effectively supported the effective application of vertical reinforcement rigid pile composite foundation in hydraulic engineering. The service mechanism of composite foundation was fully analyzed.

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions (하중 및 기초조건에 따른 GCP 복합지반의 거동분석)

  • Kim, Gyeong-Eop;Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.127-137
    • /
    • 2018
  • Gravel Compaction Pile (hereinafter referred to as GCP) is a ground improvement technique by packing crushed stones on fragile clay ground, pressing it, and forming stakes on the foundation. Although many researchers have analyzed stress behavior of GCP composite ground on domestic GCP technique using laboratory experiment and field experiment, analyses of stress behavior according to the difference of stiffness of mat foundation loaded on the upper foundation of GCP composite ground have not been done actively. Therefore, this study aimed to identify the stress concentration ratio in accordance with the difference of basis stiffness by interpreting figures. To perform this, replacement ratio was changed and modelled using ABAQUS, software for finite element analysis and analyzed the stress concentration ratio, amounts of settlement, and maximum amounts of horizontal displacement of composite ground in accordance with the difference of stiffness. An analysis showed that the stress concentration ratio of rigid foundation was highly assessed than unloading of flexible foundation in case of unloading, while amounts of settlement under flexible unloading condition were slightly higher than under rigid condition. This indicates that the characteristic of stress behavior on the different stiffness of upper foundation needs to be clarified. In addition, the maximum horizontal displacement was generated in a constant level regardless of the difference of stiffness.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.