과제정보
본 연구는 2024년도 식품의약품안전처의 연구개발비(20163MFDS641)로 수행되었으며, 이에 감사드립니다.
참고문헌
- Murray, G.D., Fail, R., Fairbanks, L., Campbell, L.M., D'Anna, L., Stoll, J., Seafood consumption and the management of shellfish aquaculture. Mar. Policy, 150, 105534-105546 (2023).
- Tan, K., Sun, Y., Zhang, H., Zheng, H., Effects of harmful algal blooms on the physiological, immunity and resistance to environmental stress of bivalves: special focus on paralytic shellfish poisoning and diarrhetic shellfish poisoning. Aquac., 563, 739000-739012 (2023).
- Hinder, S.L., Hays, G.C., Brooks, C.J., Davies, A.P., Edwards, M., Walne, A.W., Gravenor, M.B., Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications. Environ. Health, 10, 1-12 (2011).
- Cusick, K.D., Sayler, G.S., An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar. Drugs, 11, 991-1018 (2013).
- Bialojan, C., Takai, A., Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J., 256, 283-290 (1988).
- Ruberu, S.R., Langlois, G.W., Masuda, M., Kittredge, C., Perera, S.K., Kudela, R.M., Receptor binding assay for the detection of paralytic shellfish poisoning toxins: comparison to the mouse bioassay and applicability under regulatory use. Food Addit. Contam., 35, 144-158 (2018).
- Dell'Aversano, C., Tartaglione, L., Polito, G., Dean, K., Giacobbe, M., Casabianca, S., Capellacci, S., Penna, A., Turner, A.D., First detection of tetrodotoxin and high levels of paralytic shellfish poisoning toxins in shellfish from Sicily (Italy) by three different analytical methods. Chemosphere, 215, 881-892 (2019).
- Costa, C.Q., Afonso, I.I., Lage, S., Costa, P.R., Canario, A.V., Da Silva, J.P., Quantitation overcoming matrix effects of lipophilic toxins in Mytilus galloprovincialis by liquid chromatography-full scan high resolution mass spectrometry analysis (LC-HR-MS). Mar. Drugs, 20, 143-154 (2022).
- Wang, Q., Yang, Q., Wu, W., Ensuring seafood safe to spoon: a brief review of biosensors for marine biotoxin monitoring. Crit. Rev. Food Sci. Nutr., 62, 2495-2507 (2022).
- Bano, K., Khan, W.S., Cao, C., Khan, R.F., Webster, T.J., 2020. Biosensors for detection of marine toxins. in Nanobiosensors: Design to Applications, Wu, A., Khan, W.S., (Ed), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 329-356.
- Liu, R., Pei, Q., Sun, T., Xu, F., Shao, X., Liu, J., Yan, Z., Wang, D., Tian, Y., Jing, D., Recent advances in shellfish toxin biosensing technologies: micro/nano molecule-and cell-based biosensors. Trends Food Sci. Technol., 152, 104692-104705 (2024).
- Bazin, I., Tria, S.A., Hayat, A., Marty, J.L., New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron., 87, 285-298 (2017).
- Liu, Q., Wu, C., Cai, H., Hu, N., Zhou, J., Wang, P., Cell-based biosensors and their application in biomedicine. Chem. Rev., 114, 6423-6461 (2014).
- Gupta, N., Renugopalakrishnan, V., Liepmann, D., Paulmurugan, R., Malhotra, B.D., Cell-based biosensors: recent trends, challenges and future perspectives. Biosens. Bioelectron., 141, 111435-111457 (2019).
- Bousse, L., Whole cell biosensors. Sens. Actuators B: Chem., 34, 270-275 (1996).
- Wang, X., Zhou, J., Wang, H., Bioreceptors as the key components for electrochemical biosensing in medicine. Cell Rep. Phys. Sci., 5, 101801-101838 (2024).
- Tang, X., Zuo, J., Yang, C., Jiang, J., Zhang, Q., Ping, J., Li, P., Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): principles, application, and perspective. TrAC, Trends Anal. Chem., 165, 117144-117157 (2023).
- Morea, V., Tramontano, A., Rustici, M., Chothia, C., Lesk, A. M., Antibody structure, prediction and redesign. Biophys. Chem., 68, 9-16 (1997).
- Tomita, M., Tsumoto, K., Hybridoma technologies for antibody production. Immunotherapy, 3, 371-380 (2011).
- Siegel, D., Recombinant monoclonal antibody technology. Transfus. Clin. Biol., 9, 15-22 (2002).
- Hoogenboom, H.R., de Bruine, A.P., Hufton, S.E., Hoet, R. M., Arends, J.W., Roovers, R.C., Antibody phage display technology and its applications. Immunotechnol., 4, 1-20 (1998).
- Johnson, H.M., Frey, P.A., Angelotti, R., Campbell, J.E., Lewis, K.H., Haptenic properties of paralytic shellfish poison conjugated to proteins by formaldehyde treatment. Proc. Soc. Exp. Biol. Med., 117, 425-430 (1964).
- Vilarino, N., Fonfria, E.S., Louzao, M.C., Botana, L.M., Use of biosensors as alternatives to current regulatory methods for marine biotoxins. Sensors, 9, 9414-9443 (2009).
- Forsyth, C.J., Xu, J., Nguyen, S.T., Samdal, I.A., Briggs, L.R., Rundberget, T., Sandvik, M., Miles, C.O., Antibodies with broad specificity to azaspiracids by use of synthetic haptens. J. Am. Chem. Soc., 128, 15114-15116 (2006).
- Usleber, E., Dietrich, R., Burk, C., Schneider, E., Martlbauer, E., Immunoassay methods for paralytic shellfish poisoning toxins. J. AOAC Int., 84, 1649-1656 (2001).
- Banu, K., Mondal, B., Rai, B., Monica, N., Hanumegowda, R., Prospects for the application of aptamer based assay platforms in pathogen detection. Biocybern. Biomed. Eng., 42, 934-949 (2022).
- Kong, H.Y., Byun, J., Nucleic acid aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol. Ther., 21, 423-434 (2013).
- Zhao, Y., Yavari, K., Liu, J., Critical evaluation of aptamer binding for biosensor designs. TrAC, Trends Anal. Chem., 146, 116480-116489 (2022).
- Qi, S., Duan, N., Khan, I. M., Dong, X., Zhang, Y., Wu, S., Wang, Z., Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol. Adv., 55, 107902-107925 (2022).
- Qi, X., Li, L., Yan, X., Zhao, Y., Wang, L., Ma, R., Wang, S., Mao, X., A label-free colorimetric aptasensor containing DNA triplex molecular switch and AuNP nanozyme for highly sensitive detection of saxitoxin. J. Ocean Univ. China., 21, 1343-1350 (2022).
- Handy, S.M., Yakes, B.J., DeGrasse, J.A., Campbell, K., Elliott, C.T., Kanyuck, K.M., DeGrasse, S.L., First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin., Toxicon, 61, 30-37 (2013).
- Liu, Y., Jiang, C., Song, M., Cao, Y., Huang, Q., Lu, F., Optimization of Gonyautoxin1/4-binding G-quadruplex aptamers by label-free surface-enhanced raman spectroscopy. Toxins, 14, 622-636 (2022).
- Li, Y., Song, M., Gao, R., Lu, F., Liu, J., Huang, Q., Repurposing of thermally stable nucleic-acid aptamers for targeting tetrodotoxin (TTX). Comput. Struct. Biotechnol. J., 20, 2134-2142 (2022).
- Wang, Y., Rao, D., Wu, X., Zhang, Q., Wu, S., Aptamer-based microcantilever-array biosensor for ultra-sensitive and rapid detection of okadaic acid. Microchem. J., 160, 105644-105651 (2021).
- Ruscito, A., DeRosa, M.C., Small-molecule binding aptamers: Selection strategies, characterization, and applications. Front. Chem., 4, 14-27 (2016).
- Gu, H., Duan, N., Wu, S., Hao, L., Xia, Y., Ma, X., Wang, Z., Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci. Rep., 6, 21665-21673 (2016).
- Karimzadeh, A., Hasanzadeh, M., Shadjou, N., de la Guardia, M., Peptide based biosensors. TrAC, Trends Anal. Chem., 107, 1-20 (2018).
- Boyle, A.L., Bromley, E.H.C., Bartlett, G.J., Sessions, R.B., Sharp, T.H., Williams, C.L., Curmi, P.M.G., Forde, N.R., Linke, H., Woolfson, D.N., Squaring the circle in peptide assembly: from fibers to discrete nanostructures by de novo design. J. Am. Chem. Soc., 134, 15457-15467 (2012).
- Xu, P., Ghosh, S., Gul, A.R., Bhamore, J.R., Park, J.P., Park, T.J., Screening of specific binding peptides using phage-display techniques and their biosensing applications. TrAC, Trends Anal. Chem., 137, 116229-116246 (2021).
- Takakusagi, Y., Takakusagi, K., Sugawara, F., Sakaguchi, K., Use of phage display technology for the determination of the targets for small-molecule therapeutics. Expert Opin Drug Discov., 5, 361-389 (2010).
- Wasilewski, T., Neubauer, D., Kamysz, W., Gebicki, J., Recent progress in the development of peptide-based gas biosensors for environmental monitoring. Case Stud. Chem. Environ. Eng., 5, 100197-100209 (2022).
- Cho, C.H., Park, C.Y., Chun, H.S., Park, T.J., Park, J.P., Antibody-free and selective detection of okadaic acid using an affinity peptide-based indirect assay. Food Chem., 422, 136243-136252 (2023).
- Raju, C.V., Reddy, Y.V.M., Cho, C.H., Shin, H.H., Park, T.J., Park, J.P., Highly sensitive electrochemical peptide-based biosensor for marine biotoxin detection using a bimetallic platinum and ruthenium nanoparticle-tethered metal-organic framework modified electrode. Food Chem., 428, 136811-136821 (2023).
- Kim, J.H., Cho, C.H., Park, T.J., Park, J.P., Rapid and sensitive detection of domoic acid in shellfish using a magnetic bead-based competitive ELISA with a high-affinity peptide as a molecular binder. Chemosphere, 364, 143274-143284 (2024).
- Naresh, V., Lee, N., A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21, 1109-1120 (2021).
- Malik, S., Singh, J., Goyat, R., Saharan, Y., Chaudhry, V., Umar, A., Ibrahim, A. A., Akbar, S., Ameen, S., Baskoutas, S., Nanomaterials-based biosensor and their applications: a review. Heliyon, 9, e19929-e19952 (2023).
- Yang, K., Wu, J., Santos, S., Liu, Y., Zhu, L., Lin, F., Recent development of portable imaging platforms for cell-based assays. Biosens. Bioelectron., 124, 150-160 (2019).
- Aballay-Gonzalez, A., Gallardo-Rodriguez, J.J., Silva-Higuera, M., Rivera, A., Ulloa, V., Delgado-Rivera, L., Rivera-Belmar, A., Astuya, A., Neuro-2a cell-based assay for toxicity equivalency factor-proposal and evaluation in Chilean contaminated shellfish samples. Food Addit. Contam., 37, 162-173 (2020).
- Su, K., Pan, Y., Wan, Z., Zhong, L., Fang, J., Zou, Q., Li, H., Wang, P., Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sens. Actuators B: Chem., 251, 134-143 (2017).
- Su, K., Zhong, L., Pan, Y., Fang, J., Zou, Q., Wan, Z., Wang, P., Novel research on okadaic acid field-based detection using cell viability biosensor and Bionic e-Eye. Sens. Actuators B: Chem., 256, 448-456 (2018).
- Zou, L., Wu, C., Wang, Q., Zhou, J., Su, K., Li, H., Hu, N., Wang, P., An improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-based impedance biosensor. Biosens. Bioelectron., 67, 458-464 (2015).
- Sun, X., Xiang, Y., Liu, M., Xu, X., Zhang, L., Zhuang, L., Wang, P., Wang, Q., High-performance and-efficiency cardiomyocyte-based potential biosensor for temporal-specific detection of ion channel marine toxins. Biosens. Bioelectron., 220, 114837-114845 (2023).
- Li, H., Wei, X., Gu, C., Su, K., Wan, H., Hu, N., Wang, P., A dual functional cardioinyocyte-based hybrid-biosensor for the detection of diarrhetic shellfish poisoning and paralytic shellfish poisoning toxins. Anal. Sci., 34, 893-900 (2018).
- Wenjia, L., Jiasheng, C., Weicong, P., Yixue, D., Xiaoguo, Y., A novel high frequency SAWR based sensor combined with living cells for shellfish toxin quantitative determination. J. Food Meas. Charact., 15, 1810-1814 (2021).
- Deng, Y., Zheng, H., Yi, X., Shao, C., Xiang, B., Wang, S., Zhao, Z., Zhang, X., Hui, G., Paralytic shellfish poisoning toxin detection based on cell-based sensor and non-linear signal processing model. Int. J. Food Prop., 22, 890-897 (2019).
- Holford, T. R., Davis, F., Higson, S. P., Recent trends in antibody based sensors. Biosens. Bioelectron., 34, 12-24 (2012).
- Ji, Y., Wang, R., Zhao, H., Toward sensitive and reliable immunoassays of marine biotoxins: From Rational Design to Food Analysis. J. Agric. Food Chem., 72, 16076-16094 (2024).
- Pang, L., Quan, H., Sun, Y., Wang, P., Ma, D., Mu, P., Chai, T., Zhang, Y., Hammock, B. D., A rapid competitive ELISA assay of okadaic acid level based on epoxy-functionalized magnetic beads. Food Agric. Immunol., 30, 1286-1302 (2019).
- Li, X., Cheng, Y., Xu, R., Zhang, Z., Qi, X., Chen, L., Zhu, M., A smartphone-assisted microarray immunosensor coupled with GO-based multi-stage signal amplification strategy for high-sensitivity detection of okadaic acid. Talanta, 247, 123567-123575 (2022).
- Shao, Y., Li, X., Qi, X., Li, J., Zhao, S., Sun, P., Wang, H., Cheng, Y., Zhang, Z., Chen, L., Zhang, X., Zhu, M., A graphene oxide-assisted protein immobilization paper-tip immunosensor with smartphone and naked eye readout for the detection of okadaic acid. Anal. Chim. Acta, 1314, 342781-342788 (2024).
- Yin, M., Wang, W., Wei, J., Chen, X., Chen, Q., Chen, X., Oyama, M., Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem., 368, 130856-130863 (2022).
- Hayat, A., Barthelmebs, L., Marty, J.L., Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sens. Actuators B: Chem., 171, 810-815 (2012).
- Li, R., Cao, L., Liang, C., Sun, S., Liu, H., Yan, P., Development and modeling of an ultrasensitive label-free electrochemical immunosensor for okadaic acid based on polythionine-modified three-dimensional gold nanoelectrode ensembles. Ionics, 26, 4661-4670 (2020).
- Zheng, C., Ge, R., Wei, J., Jiao, T., Chen, Q., Chen, Q., Chen, X., NIR-responsive photoelectrochemical sensing platform for the simultaneous determination of tetrodotoxin and okadaic acid in Nassariidae. Food Chem., 430, 136999-137006 (2024).
- Zhang, Z., Zhang, C., Luan, W., Li, X., Liu, Y., Luo, X., Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement. Anal. Chim. Acta, 888, 27-35 (2015).
- Su, B., Zhang, Z., Sun, Z., Tang, Z., Xie, X., Chen, Q., Cao, H., Yu, X., Xu, Y., Liu, X., D. Hammock, B., Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A. J. Hazard. Mater., 422, 126838-126847 (2022).
- Tian, Y., Du, L., Zhu, P., Chen, Y., Chen, W., Wu, C., Wang, P., Recent progress in micro/nano biosensors for shellfish toxin detection. Biosens. Bioelectron., 176, 112899-112910 (2021).
- Yoo, H., Jo, H., Oh, S.S., Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater. Adv., 1, 2663-2687 (2020).
- Tian, R.Y., Lin, C., Yu, S.Y., Gong, S., Hu, P., Li, Y.S., Wu, Z.C., Gao, Y., Zhou, Y., Liu, Z.S., Ren, H.L., Lu, S.Y., Preparation of a specific ssDNA aptamer for brevetoxin-2 using SELEX. J. Anal. Methods Chem., 2016, 9241860-9241867 (2016).
- Zhao, Y., Li, L., Ma, R., Wang, L., Yan, X., Qi, X., Wang, S., Mao, X., A competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of AuNPs nanozyme for highly sensitive detection of saxitoxin. Anal. Chim. Acta, 1173, 338710-338717 (2021).
- Liu, S., Huo, Y., Li, G., Huang, L., Wang, T., Gao, Z., Aptamer-controlled reversible colorimetric assay: High-activity bimetallic organic frameworks for the efficient sensing of marine biotoxins. J. Chem. Eng., 469, 144027-144038 (2023).
- Bhupathi, P., Elhassan A-Elgadir, T. M., Mohammed Ali, R. H., Sanaan Jabbar, H., Gulnoza, D., Joshi, S., Kadhem Abid, M., Ahmed Said, E., Alawadi, A., Alsaalamy, A., Fluorescence resonance energy transfer (FRET)-based sensor for detection of foodborne pathogenic bacteria: A review. Crit. Rev. Anal. Chem., 2, 1-18 (2023).
- Kweon, S.Y., Park, J.P., Park, C.Y., Park, T.J., Graphene oxide-mediated fluorometric aptasensor for okadaic acid detection. Biochip J., 16, 207-213 (2022).
- Gu, H., Duan, N., Xia, Y., Hun, X., Wang, H., Wang, Z., Magnetic separation-based multiple SELEX for effectively selecting aptamers against saxitoxin, domoic acid, and tetrodotoxin. J. Agric. Food Chem., 66, 9801-9809 (2018).
- Park, J.A., Kwon, N., Park, E., Kim, Y., Jang, H., Min, J., Lee, T., Electrochemical biosensor with aptamer/porous platinum nanoparticle on round-type micro-gap electrode for saxitoxin detection in fresh water. Biosens. Bioelectron., 210, 114300-114308 (2022).
- Rhouati, A., Zourob, M., Development of a multiplexed electrochemical aptasensor for the detection of cyanotoxins. Biosensors, 14, 268-280 (2024).
- Ramalingam, S., Hayward, G. L., Singh, A., A reusable QCR aptasensor for the detection of brevetoxin-2 in shellfish. Talanta, 233, 122503-122510 (2021).
- Wei, W., Wu, J., Hassan, M.M., Jiao, T., Xu, Y., Ding, Z., Li, H., Chen, Q., Generalized ratiometric surface-enhanced Raman scattering biosensor for okadaic acid in food based on Au-triggered signal amplification. Anal. Chim. Acta, 1310, 342705-342714 (2024).
- Sequeira-Antunes, B., Ferreira, H.A., Nucleic acid aptamer-based biosensors: a review. Biomedicines, 11, 3201-3223 (2023).
- Kim, T.H., Cho, C.H., Kweon, S.Y., Kim, S.M., Kailasa, S. K., Park, J.P., Park, C.Y., Park, T.J., Development of fluorometric detection for saxitoxin with its specific binding peptide. Sens. Diagn., 3, 301-308 (2024).
- Kim, S.M., Xu, P., Hyun, M.S., Park, J.P., Park, C.Y., Park, T. J., Development of an electrochemical biosensor for tetrodotoxin using specific binding peptide on polypyrrole/Au nanoparticle-modified electrodes. Biochip J., 18, 495-504 (2024).
- Liu, B., Chen, L., Zhu, Y., Zhao, X., Wang, H., Wang, S., A novel screening on the specific peptides by molecular simulation and development of the highly-sensitive electrochemical sensor for saxitoxin. Microchem. J., 200, 110432-110438 (2024).
- Hendrickson, O.D., Zvereva, E.A., Panferov, V.G., Solopova, O.N., Zherdev, A.V., Sveshnikov, P.G., Dzantiev, B.B., Application of Au@Pt nanozyme as enhancing label for the sensitive lateral flow immunoassay of okadaic acid. Biosensors, 12, 1137-1151 (2022).
- Samdal, I.A., Lovberg, K.E., Kristoffersen, A.B., Briggs, L. R., Kilcoyne, J., Forsyth, C.J., Miles, C.O., A practical ELISA for azaspiracids in shellfish via development of a new plate-coating antigen. J. Agric. Food Chem., 67, 2369-2376 (2019).
- Leonardo, S., Rambla-Alegre, M., Samdal, I.A., Miles, C.O., Kilcoyne, J., Diogene, J., O'Sullivan, C.K., Campas, M., Immunorecognition magnetic supports for the development of an electrochemical immunoassay for azaspiracid detection in mussels. Biosens. Bioelectron., 92, 200-206 (2017).
- Shan, W., Chen, K., Sun, J., Liu, R., Xu, W., Shao, B., Mismatched duplexed aptamer-isothermal amplification-based nucleic acid-nanoflower for fluorescent detection of okadaic acid. Food Chem., 424, 136374-136382 (2023).
- Ullah, N., Noureen, B., Tian, Y., Du, L., Chen, W., Wu, C., Label-free detection of saxitoxin with field-effect device-based biosensor. Nanomaterials, 12, 1505-1516 (2022).
- Cho, C.H., Kim, J.H., Padalkar, N.S., Reddy, Y.V.M., Park, T.J., Park, J.Y., Park, J.P., Nanozyme-assisted molecularly imprinted polymer-based indirect competitive ELISA for the detection of marine biotoxin. Biosens. Bioelectron., 255, 116269-116279 (2024).