DOI QR코드

DOI QR Code

해양생물독소의 신속 검출을 위한 친화성 바이오리셉터 기반 바이오센서 개발 동향

Trends in Development of Affinity Bioreceptor-based Biosensor for Rapid Detection of Marine Biotoxins

  • 조채환 (중앙대학교 생명공학대학 식품공학과) ;
  • 박태정 (중앙대학교 화학과) ;
  • 박종필 (중앙대학교 생명공학대학 식품공학과)
  • Chae Hwan Cho (Department of Food Science and Technology, College of Biotechnology and Natural Resources, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University) ;
  • Tae Jung Park (Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University) ;
  • Jong Pil Park (Department of Food Science and Technology, College of Biotechnology and Natural Resources, GreenTech-Based Food Safety Research Group (BK21 Four), Chung-Ang University)
  • 투고 : 2024.10.02
  • 심사 : 2024.10.15
  • 발행 : 2024.10.30

초록

기후 변화로 인한 해양 온도 상승으로 해양생물독소의 발생 빈도가 점점 증가하고 있으며, 이는 식품 안전과 공중 보건에 중대한 위협을 가하고 있다. 해양생물독소를 검출하기 위한 기존의 방법인 마우스 생체검사(MBA), 고성능 액체 크로마토그래피(HPLC), 액체 크로마토그래피-질량 분석법(LC-MS) 등은 절차가 오래 걸리고 비용이 많이 든다는 한계가 있다. 이러한 문제를 해결하기 위한 대안으로 바이오센서 기술이 유망한 해결책으로 부상하고 있다. 이러한 바이오센서는 세포, 항체, 압타머, 펩타이드와 같은 바이오리셉터를 이용해 해양생물독소를 신속하고 정확하게 검출한다. 본 리뷰에서는 다양한 종류의 바이오리셉터를 논의하고, 해양생물독소 검출을 위한 바이오센서 기술의 최근 발전을 탐구한다. 또한, 이러한 바이오리셉터의 장점을 강조하며, 해양생물독소 검출을 위한 바이오센서 성능 향상을 위한 미래 연구 방향을 고려한다.

Marine biotoxins are becoming increasingly prevalent due to rising ocean temperatures driven by global warming, posing serious threats to food safety and public health. Traditional detection methods for marine biotoxins, such as mouse bioassays, high-performance liquid chromatography, and liquid chromatography-mass spectrometry, are limited by time-consuming procedures and high costs. Biosensor technology has emerged as a promising alternative. These biosensors employ bioreceptors (such as cells, antibodies, aptamers, and peptides) to detect marine biotoxins rapidly and accurately. In this review, we discuss the various types of bioreceptors and explore recent developments in biosensor technologies for marine biotoxin detection. Furthermore, we highlight the advantages of these bioreceptors and consider future directions for improving biosensor performance in detecting marine biotoxins.

키워드

과제정보

본 연구는 2024년도 식품의약품안전처의 연구개발비(20163MFDS641)로 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Murray, G.D., Fail, R., Fairbanks, L., Campbell, L.M., D'Anna, L., Stoll, J., Seafood consumption and the management of shellfish aquaculture. Mar. Policy, 150, 105534-105546 (2023). 
  2. Tan, K., Sun, Y., Zhang, H., Zheng, H., Effects of harmful algal blooms on the physiological, immunity and resistance to environmental stress of bivalves: special focus on paralytic shellfish poisoning and diarrhetic shellfish poisoning. Aquac., 563, 739000-739012 (2023). 
  3. Hinder, S.L., Hays, G.C., Brooks, C.J., Davies, A.P., Edwards, M., Walne, A.W., Gravenor, M.B., Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications. Environ. Health, 10, 1-12 (2011). 
  4. Cusick, K.D., Sayler, G.S., An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar. Drugs, 11, 991-1018 (2013). 
  5. Bialojan, C., Takai, A., Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J., 256, 283-290 (1988). 
  6. Ruberu, S.R., Langlois, G.W., Masuda, M., Kittredge, C., Perera, S.K., Kudela, R.M., Receptor binding assay for the detection of paralytic shellfish poisoning toxins: comparison to the mouse bioassay and applicability under regulatory use. Food Addit. Contam., 35, 144-158 (2018). 
  7. Dell'Aversano, C., Tartaglione, L., Polito, G., Dean, K., Giacobbe, M., Casabianca, S., Capellacci, S., Penna, A., Turner, A.D., First detection of tetrodotoxin and high levels of paralytic shellfish poisoning toxins in shellfish from Sicily (Italy) by three different analytical methods. Chemosphere, 215, 881-892 (2019). 
  8. Costa, C.Q., Afonso, I.I., Lage, S., Costa, P.R., Canario, A.V., Da Silva, J.P., Quantitation overcoming matrix effects of lipophilic toxins in Mytilus galloprovincialis by liquid chromatography-full scan high resolution mass spectrometry analysis (LC-HR-MS). Mar. Drugs, 20, 143-154 (2022). 
  9. Wang, Q., Yang, Q., Wu, W., Ensuring seafood safe to spoon: a brief review of biosensors for marine biotoxin monitoring. Crit. Rev. Food Sci. Nutr., 62, 2495-2507 (2022). 
  10. Bano, K., Khan, W.S., Cao, C., Khan, R.F., Webster, T.J., 2020. Biosensors for detection of marine toxins. in Nanobiosensors: Design to Applications, Wu, A., Khan, W.S., (Ed), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 329-356. 
  11. Liu, R., Pei, Q., Sun, T., Xu, F., Shao, X., Liu, J., Yan, Z., Wang, D., Tian, Y., Jing, D., Recent advances in shellfish toxin biosensing technologies: micro/nano molecule-and cell-based biosensors. Trends Food Sci. Technol., 152, 104692-104705 (2024). 
  12. Bazin, I., Tria, S.A., Hayat, A., Marty, J.L., New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron., 87, 285-298 (2017). 
  13. Liu, Q., Wu, C., Cai, H., Hu, N., Zhou, J., Wang, P., Cell-based biosensors and their application in biomedicine. Chem. Rev., 114, 6423-6461 (2014). 
  14. Gupta, N., Renugopalakrishnan, V., Liepmann, D., Paulmurugan, R., Malhotra, B.D., Cell-based biosensors: recent trends, challenges and future perspectives. Biosens. Bioelectron., 141, 111435-111457 (2019). 
  15. Bousse, L., Whole cell biosensors. Sens. Actuators B: Chem., 34, 270-275 (1996). 
  16. Wang, X., Zhou, J., Wang, H., Bioreceptors as the key components for electrochemical biosensing in medicine. Cell Rep. Phys. Sci., 5, 101801-101838 (2024). 
  17. Tang, X., Zuo, J., Yang, C., Jiang, J., Zhang, Q., Ping, J., Li, P., Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): principles, application, and perspective. TrAC, Trends Anal. Chem., 165, 117144-117157 (2023). 
  18. Morea, V., Tramontano, A., Rustici, M., Chothia, C., Lesk, A. M., Antibody structure, prediction and redesign. Biophys. Chem., 68, 9-16 (1997). 
  19. Tomita, M., Tsumoto, K., Hybridoma technologies for antibody production. Immunotherapy, 3, 371-380 (2011). 
  20. Siegel, D., Recombinant monoclonal antibody technology. Transfus. Clin. Biol., 9, 15-22 (2002). 
  21. Hoogenboom, H.R., de Bruine, A.P., Hufton, S.E., Hoet, R. M., Arends, J.W., Roovers, R.C., Antibody phage display technology and its applications. Immunotechnol., 4, 1-20 (1998). 
  22. Johnson, H.M., Frey, P.A., Angelotti, R., Campbell, J.E., Lewis, K.H., Haptenic properties of paralytic shellfish poison conjugated to proteins by formaldehyde treatment. Proc. Soc. Exp. Biol. Med., 117, 425-430 (1964). 
  23. Vilarino, N., Fonfria, E.S., Louzao, M.C., Botana, L.M., Use of biosensors as alternatives to current regulatory methods for marine biotoxins. Sensors, 9, 9414-9443 (2009). 
  24. Forsyth, C.J., Xu, J., Nguyen, S.T., Samdal, I.A., Briggs, L.R., Rundberget, T., Sandvik, M., Miles, C.O., Antibodies with broad specificity to azaspiracids by use of synthetic haptens. J. Am. Chem. Soc., 128, 15114-15116 (2006). 
  25. Usleber, E., Dietrich, R., Burk, C., Schneider, E., Martlbauer, E., Immunoassay methods for paralytic shellfish poisoning toxins. J. AOAC Int., 84, 1649-1656 (2001). 
  26. Banu, K., Mondal, B., Rai, B., Monica, N., Hanumegowda, R., Prospects for the application of aptamer based assay platforms in pathogen detection. Biocybern. Biomed. Eng., 42, 934-949 (2022). 
  27. Kong, H.Y., Byun, J., Nucleic acid aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol. Ther., 21, 423-434 (2013). 
  28. Zhao, Y., Yavari, K., Liu, J., Critical evaluation of aptamer binding for biosensor designs. TrAC, Trends Anal. Chem., 146, 116480-116489 (2022). 
  29. Qi, S., Duan, N., Khan, I. M., Dong, X., Zhang, Y., Wu, S., Wang, Z., Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol. Adv., 55, 107902-107925 (2022). 
  30. Qi, X., Li, L., Yan, X., Zhao, Y., Wang, L., Ma, R., Wang, S., Mao, X., A label-free colorimetric aptasensor containing DNA triplex molecular switch and AuNP nanozyme for highly sensitive detection of saxitoxin. J. Ocean Univ. China., 21, 1343-1350 (2022). 
  31. Handy, S.M., Yakes, B.J., DeGrasse, J.A., Campbell, K., Elliott, C.T., Kanyuck, K.M., DeGrasse, S.L., First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin., Toxicon, 61, 30-37 (2013). 
  32. Liu, Y., Jiang, C., Song, M., Cao, Y., Huang, Q., Lu, F., Optimization of Gonyautoxin1/4-binding G-quadruplex aptamers by label-free surface-enhanced raman spectroscopy. Toxins, 14, 622-636 (2022). 
  33. Li, Y., Song, M., Gao, R., Lu, F., Liu, J., Huang, Q., Repurposing of thermally stable nucleic-acid aptamers for targeting tetrodotoxin (TTX). Comput. Struct. Biotechnol. J., 20, 2134-2142 (2022). 
  34. Wang, Y., Rao, D., Wu, X., Zhang, Q., Wu, S., Aptamer-based microcantilever-array biosensor for ultra-sensitive and rapid detection of okadaic acid. Microchem. J., 160, 105644-105651 (2021). 
  35. Ruscito, A., DeRosa, M.C., Small-molecule binding aptamers: Selection strategies, characterization, and applications. Front. Chem., 4, 14-27 (2016). 
  36. Gu, H., Duan, N., Wu, S., Hao, L., Xia, Y., Ma, X., Wang, Z., Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci. Rep., 6, 21665-21673 (2016). 
  37. Karimzadeh, A., Hasanzadeh, M., Shadjou, N., de la Guardia, M., Peptide based biosensors. TrAC, Trends Anal. Chem., 107, 1-20 (2018). 
  38. Boyle, A.L., Bromley, E.H.C., Bartlett, G.J., Sessions, R.B., Sharp, T.H., Williams, C.L., Curmi, P.M.G., Forde, N.R., Linke, H., Woolfson, D.N., Squaring the circle in peptide assembly: from fibers to discrete nanostructures by de novo design. J. Am. Chem. Soc., 134, 15457-15467 (2012). 
  39. Xu, P., Ghosh, S., Gul, A.R., Bhamore, J.R., Park, J.P., Park, T.J., Screening of specific binding peptides using phage-display techniques and their biosensing applications. TrAC, Trends Anal. Chem., 137, 116229-116246 (2021). 
  40. Takakusagi, Y., Takakusagi, K., Sugawara, F., Sakaguchi, K., Use of phage display technology for the determination of the targets for small-molecule therapeutics. Expert Opin Drug Discov., 5, 361-389 (2010). 
  41. Wasilewski, T., Neubauer, D., Kamysz, W., Gebicki, J., Recent progress in the development of peptide-based gas biosensors for environmental monitoring. Case Stud. Chem. Environ. Eng., 5, 100197-100209 (2022). 
  42. Cho, C.H., Park, C.Y., Chun, H.S., Park, T.J., Park, J.P., Antibody-free and selective detection of okadaic acid using an affinity peptide-based indirect assay. Food Chem., 422, 136243-136252 (2023). 
  43. Raju, C.V., Reddy, Y.V.M., Cho, C.H., Shin, H.H., Park, T.J., Park, J.P., Highly sensitive electrochemical peptide-based biosensor for marine biotoxin detection using a bimetallic platinum and ruthenium nanoparticle-tethered metal-organic framework modified electrode. Food Chem., 428, 136811-136821 (2023). 
  44. Kim, J.H., Cho, C.H., Park, T.J., Park, J.P., Rapid and sensitive detection of domoic acid in shellfish using a magnetic bead-based competitive ELISA with a high-affinity peptide as a molecular binder. Chemosphere, 364, 143274-143284 (2024). 
  45. Naresh, V., Lee, N., A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21, 1109-1120 (2021). 
  46. Malik, S., Singh, J., Goyat, R., Saharan, Y., Chaudhry, V., Umar, A., Ibrahim, A. A., Akbar, S., Ameen, S., Baskoutas, S., Nanomaterials-based biosensor and their applications: a review. Heliyon, 9, e19929-e19952 (2023). 
  47. Yang, K., Wu, J., Santos, S., Liu, Y., Zhu, L., Lin, F., Recent development of portable imaging platforms for cell-based assays. Biosens. Bioelectron., 124, 150-160 (2019). 
  48. Aballay-Gonzalez, A., Gallardo-Rodriguez, J.J., Silva-Higuera, M., Rivera, A., Ulloa, V., Delgado-Rivera, L., Rivera-Belmar, A., Astuya, A., Neuro-2a cell-based assay for toxicity equivalency factor-proposal and evaluation in Chilean contaminated shellfish samples. Food Addit. Contam., 37, 162-173 (2020). 
  49. Su, K., Pan, Y., Wan, Z., Zhong, L., Fang, J., Zou, Q., Li, H., Wang, P., Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sens. Actuators B: Chem., 251, 134-143 (2017). 
  50. Su, K., Zhong, L., Pan, Y., Fang, J., Zou, Q., Wan, Z., Wang, P., Novel research on okadaic acid field-based detection using cell viability biosensor and Bionic e-Eye. Sens. Actuators B: Chem., 256, 448-456 (2018). 
  51. Zou, L., Wu, C., Wang, Q., Zhou, J., Su, K., Li, H., Hu, N., Wang, P., An improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-based impedance biosensor. Biosens. Bioelectron., 67, 458-464 (2015). 
  52. Sun, X., Xiang, Y., Liu, M., Xu, X., Zhang, L., Zhuang, L., Wang, P., Wang, Q., High-performance and-efficiency cardiomyocyte-based potential biosensor for temporal-specific detection of ion channel marine toxins. Biosens. Bioelectron., 220, 114837-114845 (2023). 
  53. Li, H., Wei, X., Gu, C., Su, K., Wan, H., Hu, N., Wang, P., A dual functional cardioinyocyte-based hybrid-biosensor for the detection of diarrhetic shellfish poisoning and paralytic shellfish poisoning toxins. Anal. Sci., 34, 893-900 (2018). 
  54. Wenjia, L., Jiasheng, C., Weicong, P., Yixue, D., Xiaoguo, Y., A novel high frequency SAWR based sensor combined with living cells for shellfish toxin quantitative determination. J. Food Meas. Charact., 15, 1810-1814 (2021). 
  55. Deng, Y., Zheng, H., Yi, X., Shao, C., Xiang, B., Wang, S., Zhao, Z., Zhang, X., Hui, G., Paralytic shellfish poisoning toxin detection based on cell-based sensor and non-linear signal processing model. Int. J. Food Prop., 22, 890-897 (2019). 
  56. Holford, T. R., Davis, F., Higson, S. P., Recent trends in antibody based sensors. Biosens. Bioelectron., 34, 12-24 (2012). 
  57. Ji, Y., Wang, R., Zhao, H., Toward sensitive and reliable immunoassays of marine biotoxins: From Rational Design to Food Analysis. J. Agric. Food Chem., 72, 16076-16094 (2024). 
  58. Pang, L., Quan, H., Sun, Y., Wang, P., Ma, D., Mu, P., Chai, T., Zhang, Y., Hammock, B. D., A rapid competitive ELISA assay of okadaic acid level based on epoxy-functionalized magnetic beads. Food Agric. Immunol., 30, 1286-1302 (2019). 
  59. Li, X., Cheng, Y., Xu, R., Zhang, Z., Qi, X., Chen, L., Zhu, M., A smartphone-assisted microarray immunosensor coupled with GO-based multi-stage signal amplification strategy for high-sensitivity detection of okadaic acid. Talanta, 247, 123567-123575 (2022). 
  60. Shao, Y., Li, X., Qi, X., Li, J., Zhao, S., Sun, P., Wang, H., Cheng, Y., Zhang, Z., Chen, L., Zhang, X., Zhu, M., A graphene oxide-assisted protein immobilization paper-tip immunosensor with smartphone and naked eye readout for the detection of okadaic acid. Anal. Chim. Acta, 1314, 342781-342788 (2024). 
  61. Yin, M., Wang, W., Wei, J., Chen, X., Chen, Q., Chen, X., Oyama, M., Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem., 368, 130856-130863 (2022). 
  62. Hayat, A., Barthelmebs, L., Marty, J.L., Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sens. Actuators B: Chem., 171, 810-815 (2012). 
  63. Li, R., Cao, L., Liang, C., Sun, S., Liu, H., Yan, P., Development and modeling of an ultrasensitive label-free electrochemical immunosensor for okadaic acid based on polythionine-modified three-dimensional gold nanoelectrode ensembles. Ionics, 26, 4661-4670 (2020). 
  64. Zheng, C., Ge, R., Wei, J., Jiao, T., Chen, Q., Chen, Q., Chen, X., NIR-responsive photoelectrochemical sensing platform for the simultaneous determination of tetrodotoxin and okadaic acid in Nassariidae. Food Chem., 430, 136999-137006 (2024). 
  65. Zhang, Z., Zhang, C., Luan, W., Li, X., Liu, Y., Luo, X., Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement. Anal. Chim. Acta, 888, 27-35 (2015). 
  66. Su, B., Zhang, Z., Sun, Z., Tang, Z., Xie, X., Chen, Q., Cao, H., Yu, X., Xu, Y., Liu, X., D. Hammock, B., Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A. J. Hazard. Mater., 422, 126838-126847 (2022). 
  67. Tian, Y., Du, L., Zhu, P., Chen, Y., Chen, W., Wu, C., Wang, P., Recent progress in micro/nano biosensors for shellfish toxin detection. Biosens. Bioelectron., 176, 112899-112910 (2021). 
  68. Yoo, H., Jo, H., Oh, S.S., Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater. Adv., 1, 2663-2687 (2020). 
  69. Tian, R.Y., Lin, C., Yu, S.Y., Gong, S., Hu, P., Li, Y.S., Wu, Z.C., Gao, Y., Zhou, Y., Liu, Z.S., Ren, H.L., Lu, S.Y., Preparation of a specific ssDNA aptamer for brevetoxin-2 using SELEX. J. Anal. Methods Chem., 2016, 9241860-9241867 (2016). 
  70. Zhao, Y., Li, L., Ma, R., Wang, L., Yan, X., Qi, X., Wang, S., Mao, X., A competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of AuNPs nanozyme for highly sensitive detection of saxitoxin. Anal. Chim. Acta, 1173, 338710-338717 (2021). 
  71. Liu, S., Huo, Y., Li, G., Huang, L., Wang, T., Gao, Z., Aptamer-controlled reversible colorimetric assay: High-activity bimetallic organic frameworks for the efficient sensing of marine biotoxins. J. Chem. Eng., 469, 144027-144038 (2023). 
  72. Bhupathi, P., Elhassan A-Elgadir, T. M., Mohammed Ali, R. H., Sanaan Jabbar, H., Gulnoza, D., Joshi, S., Kadhem Abid, M., Ahmed Said, E., Alawadi, A., Alsaalamy, A., Fluorescence resonance energy transfer (FRET)-based sensor for detection of foodborne pathogenic bacteria: A review. Crit. Rev. Anal. Chem., 2, 1-18 (2023). 
  73. Kweon, S.Y., Park, J.P., Park, C.Y., Park, T.J., Graphene oxide-mediated fluorometric aptasensor for okadaic acid detection. Biochip J., 16, 207-213 (2022). 
  74. Gu, H., Duan, N., Xia, Y., Hun, X., Wang, H., Wang, Z., Magnetic separation-based multiple SELEX for effectively selecting aptamers against saxitoxin, domoic acid, and tetrodotoxin. J. Agric. Food Chem., 66, 9801-9809 (2018). 
  75. Park, J.A., Kwon, N., Park, E., Kim, Y., Jang, H., Min, J., Lee, T., Electrochemical biosensor with aptamer/porous platinum nanoparticle on round-type micro-gap electrode for saxitoxin detection in fresh water. Biosens. Bioelectron., 210, 114300-114308 (2022). 
  76. Rhouati, A., Zourob, M., Development of a multiplexed electrochemical aptasensor for the detection of cyanotoxins. Biosensors, 14, 268-280 (2024). 
  77. Ramalingam, S., Hayward, G. L., Singh, A., A reusable QCR aptasensor for the detection of brevetoxin-2 in shellfish. Talanta, 233, 122503-122510 (2021). 
  78. Wei, W., Wu, J., Hassan, M.M., Jiao, T., Xu, Y., Ding, Z., Li, H., Chen, Q., Generalized ratiometric surface-enhanced Raman scattering biosensor for okadaic acid in food based on Au-triggered signal amplification. Anal. Chim. Acta, 1310, 342705-342714 (2024). 
  79. Sequeira-Antunes, B., Ferreira, H.A., Nucleic acid aptamer-based biosensors: a review. Biomedicines, 11, 3201-3223 (2023). 
  80. Kim, T.H., Cho, C.H., Kweon, S.Y., Kim, S.M., Kailasa, S. K., Park, J.P., Park, C.Y., Park, T.J., Development of fluorometric detection for saxitoxin with its specific binding peptide. Sens. Diagn., 3, 301-308 (2024). 
  81. Kim, S.M., Xu, P., Hyun, M.S., Park, J.P., Park, C.Y., Park, T. J., Development of an electrochemical biosensor for tetrodotoxin using specific binding peptide on polypyrrole/Au nanoparticle-modified electrodes. Biochip J., 18, 495-504 (2024). 
  82. Liu, B., Chen, L., Zhu, Y., Zhao, X., Wang, H., Wang, S., A novel screening on the specific peptides by molecular simulation and development of the highly-sensitive electrochemical sensor for saxitoxin. Microchem. J., 200, 110432-110438 (2024). 
  83. Hendrickson, O.D., Zvereva, E.A., Panferov, V.G., Solopova, O.N., Zherdev, A.V., Sveshnikov, P.G., Dzantiev, B.B., Application of Au@Pt nanozyme as enhancing label for the sensitive lateral flow immunoassay of okadaic acid. Biosensors, 12, 1137-1151 (2022). 
  84. Samdal, I.A., Lovberg, K.E., Kristoffersen, A.B., Briggs, L. R., Kilcoyne, J., Forsyth, C.J., Miles, C.O., A practical ELISA for azaspiracids in shellfish via development of a new plate-coating antigen. J. Agric. Food Chem., 67, 2369-2376 (2019). 
  85. Leonardo, S., Rambla-Alegre, M., Samdal, I.A., Miles, C.O., Kilcoyne, J., Diogene, J., O'Sullivan, C.K., Campas, M., Immunorecognition magnetic supports for the development of an electrochemical immunoassay for azaspiracid detection in mussels. Biosens. Bioelectron., 92, 200-206 (2017). 
  86. Shan, W., Chen, K., Sun, J., Liu, R., Xu, W., Shao, B., Mismatched duplexed aptamer-isothermal amplification-based nucleic acid-nanoflower for fluorescent detection of okadaic acid. Food Chem., 424, 136374-136382 (2023). 
  87. Ullah, N., Noureen, B., Tian, Y., Du, L., Chen, W., Wu, C., Label-free detection of saxitoxin with field-effect device-based biosensor. Nanomaterials, 12, 1505-1516 (2022). 
  88. Cho, C.H., Kim, J.H., Padalkar, N.S., Reddy, Y.V.M., Park, T.J., Park, J.Y., Park, J.P., Nanozyme-assisted molecularly imprinted polymer-based indirect competitive ELISA for the detection of marine biotoxin. Biosens. Bioelectron., 255, 116269-116279 (2024).