DOI QR코드

DOI QR Code

Revolutionizing Smart Food Packaging: The Promise and Challenges of Biosensors and Biopolymer-Based Nanocomposites

  • Ramachandran Chelliah (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Younseo Park (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Ye-Jin Jeong (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Selvakumar Vijayalakshmi (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Kaliyan Barathikannan (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Su-Jung Yeon (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Min-jin Lim (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Dong-Gyu Kim (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Deog-Hwan Oh (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University)
  • 투고 : 2024.10.08
  • 심사 : 2024.10.21
  • 발행 : 2024.10.30

초록

식품 포장 분야에서 바이오센서와 바이오폴리머 기반 나노복합체, 즉 바이오나노복합체의 통합이 점차 산업 전문가들에 의해 인식되고 있으며, 이는 식품의 품질과 안전에 대한 우려가 증가함에 따라 주도되고 있습니다. 식품 포장에 내장된 바이오센서는 포장된 상품의 미생물에 의한 변질을 지속적으로 모니터링함으로써 식품의 완전성을 유지하는 핵심 요소로 업계를 변화시킬 준비가 되어 있다. 동시에, 탁월한 기계적, 열적, 광학적, 항균적 특성으로 인해 바이오폴리머 기반 나노복합체의 연구와 적용이 크게 확대되었다. 이러한 특성은 이들을 혁신적인 포장 솔루션에 적합한 주요 재료로 만든다. 그러나 지능형 식품 포장 시스템 발전에 바이오센서와 바이오나노복합체를 사용하는 잠재적인 장애물과 전망을 탐구하는 것은 아직 충분하지 않다. 바이오나노복합체와 바이오센서의 융합을 제안하는 것은 스마트 포장 산업을 재정의하는 획기적인 단계로, 이 기술들을 더 깊이 이해하여 지속 가능하고 경제적으로 실행 가능한 스마트 포장 옵션의 개발을 촉진할 필요성을 강조한다. 이 리뷰는 바이오센서와 바이오나노복합체에 대한 기존 연구와 개발 동향을 철저히 검토하고, 가까운 미래에 스마트 식품 포장 산업에서 진전을 이끌어 낼 앞으로의 도전과 기회를 강조하는 데 전념하고 있다.

The integration of biosensors and biopolymer-based nanocomposites in food packaging is progressively being recognized by industry professionals, fueled by growing concerns over food quality and safety. Embedded biosensors in food packaging offer the potential to revolutionize the industry by providing real-time monitoring of microbial spoilage in packaged products, a critical aspect of ensuring food safety. Simultaneously, the exploration and application of biopolymer-based nanocomposites or bionanocomposites have expanded substantially, owing to their exceptional mechanical, thermal, optical, and antimicrobial properties. These attributes facilitate the suitability of these materials for innovative packaging applications. However, exploring the potential hurdles and prospects of employing biosensors and bionanocomposites in designing intelligent food packaging systems has not yet been exhaustive. Proposing the amalgamation of bionanocomposites with biosensors represents a groundbreaking step toward redefining smart packaging industries, emphasizing the necessity for a deeper understanding of these technologies to foster the development of sustainable and economically viable smart packaging options. This review examines existing research and developmental strides in biosensors and bionanocomposites, aiming to highlight the anticipated challenges and opportunities that could spearhead progress in the smart food packaging industry in the foreseeable future.

키워드

참고문헌

  1. Madilo, F.K., Kunadu, A.P.H., Tano-Debrah, K., Challenges with food safety adoption: a review. J. Food Saf., 44, e13099 (2024).
  2. Lisboa, H.M., Pasquali, M.B., dos Anjos, A.I., Sarinho, A.M., de Melo, E.D., Andrade, R., Batista, L., Lima, J., Diniz, Y., Barros, A., Innovative and sustainable food preservation techniques: enhancing food quality, safety, and environmental sustainability. Sustainability, 16, 8223 (2024).
  3. Awulachew, M.T., Weldehawaria, A.G., Food security and safety in light of global megatrends: a review. Asian J. Biol. Sci, 17, 666-677 (2024).
  4. Deshmukh, R.K., Gaikwad, K.K., Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Convers. Biorefin., 14, 4419-4440 (2024).
  5. Zhang, L., He, W., Hu, P., Wang, W., Luo, L., Li, B., Pan, B., Zhu, W., Wang, Y., Wang, J., Wang, J., Self-assembly technology engineering multi-functional slow-release packaging system with self-starting program for prolonged preservation of perishable products. Food Hydrocolloids, 155, 110230 (2024).
  6. Jain, S., Singh, R., Exploring the dynamics of packaging and labelling: a comprehensive review. Indian J. Agric. Mark., 38, 98-116 (2024).
  7. Ikumapayi, O.M., Laseinde, O.T., Nanomanufacturing in the 21st century: a review of advancements, applications and future prospects. J. Europeen des Systemes Automatises, 57, 1235-1248 (2024).
  8. Versino, F., Ortega, F., Monroy, Y., Rivero, S., Lopez, O.V., Garcia, M.A., Sustainable and bio-based food packaging: A review on past and current design innovations. Foods, 12, 1057 (2023).
  9. Thapliyal, D., Karale, M., Diwan, V., Kumra, S., Arya, R.K., Verros, G.D., Current status of sustainable food packaging regulations: global perspective. Sustainability, 16, 5554 (2024).
  10. Meliana, C., Liu, J., Show, P.L., Low, S.S., Biosensor in smart food traceability system for food safety and security. Bioengineered, 15, 2310908 (2024).
  11. Bharti, S., Jaiswal, S., Sharma, V.P., 2023. Perspective and challenges: intelligent to smart packaging for future generations. In green sustainable process for chemical and environmental engineering and science, Elsevier, Amsterdam, Nederland, pp. 171-183.
  12. Vu, N., Ghadge, A., Bourlakis, M., Blockchain adoption in food supply chains: A review and implementation framework. Prod. Plan. Control, 34, 506-523 (2023).
  13. Bhatlawande, A.R., Ghatge, P.U., Shinde, G.U., Anushree, R.K., Patil, S.D., Unlocking the future of smart food packaging: biosensors, IoT, and nano materials. Food Sci. Biotechnol., 33, 1075-1091 (2024).
  14. Liu, Y., Li, L., Yu, Z., Ye, C., Pan, L., Song, Y., Principle, development and application of time-temperature indicators for packaging. Packag. Technol. Sci., 36, 833-853 (2023).
  15. Chhabra, N., Arora, M., Garg, D., Samota, M.K., Spray freeze drying-A synergistic drying technology and its applications in the food industry to preserve bioactive compounds. Food Control, 155, 110099 (2024).
  16. Fathi, P., Bhattacharya, M., Bhattacharya, S., Karmakar, N., Use of chipless radio frequency identification technology for smart food packaging: an economic analysis for an Australian seafood industry. Informatics, 11, 52 (2024).
  17. Moital, R., 2023. Minds, machines and markets: a political analysis of technological progress in the world economy (Doctoral dissertation). Universidade Catolica Portuguesa (UCP), Lisboa, Portugal.
  18. Nolan, A., 2023. Artificial intelligence in science: challenges, opportunities and the future of research, OECD, Paris, France.
  19. Chen, N., Smart Healthcare solutions in China and Europe, an international business perspective . PhD thesis, University of Macerata, Macerata, Italy (2021).
  20. Javaid, M., Haleem, A., Rab, S., Singh, R. P., Suman, R., Sensors for daily life: a review. Sens. Int., 2, 100121 (2021).
  21. Shah, N.S., Thotathil, V., Zaidi, S.A., Sheikh, H., Mohamed, M., Qureshi, A., Sadasivuni, K. K., Picomolar or beyond limit of detection using molecularly imprinted polymerbased electrochemical sensors: a review. Biosensors, 12, 1107 (2022).
  22. Denizli, A., 2021. Molecular imprinting for nanosensors and other sensing applications, Elsevier, Amsterdam, Netherlands
  23. Gavrila, A.M., Stoica, E.B., Iordache, T.V., Sarbu, A., Modern and dedicated methods for producing molecularly imprinted polymer layers in sensing applications. Appl. Sci., 12, 3080 (2022).
  24. Sargazi, S., Fatima, I., Kiani, M.H., Mohammadzadeh, V., Arshad, R., Bilal, M., Rahdar, A., Diez-Pascual, A.M., Behzadmehr, R., Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: a comprehensive review. Int. J. Biol. Macromol., 206, 115-147 (2022).
  25. Govindaraju, R., Govindaraju, S., Yun, K., Kim, J., Fluorescent-based neurotransmitter sensors: present and future perspectives. Biosensors, 13, 1008 (2023).
  26. Patel, S., Jamunkar, R., Sinha, D., Patle, T.K., Kant, T., Dewangan, K., Shrivas, K. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: a review. Trends in Environ. Anal. Chem., 31, e00136 (2021).
  27. Shanbhag, M.M., Manasa, G., Mascarenhas, R.J., Mondal, K., Shetti, N.P., Fundamentals of bio-electrochemical sensing. Chem. Eng. J. Adv., 16, 100516 (2023).
  28. Lei, L., Ma, B., Xu, C., Liu, H., Emerging tumor-on-chips with electrochemical biosensors. TrAC Trends Analyt. Chem., 153, 116640 (2022).
  29. Tehrani, F. 2021. Lab-under-the-skin: a microneedle platform for electrochemical wearable sensing, University of California, San Diego, CA, USA.
  30. Sobhan, A., 2021. Development of bio-based nanocomposites for biosensor and indicator applications in smart food packaging, South Dakota State University, Brookings, SD, USA.
  31. Sobhan, A., Muthukumarappan, K., Wei, L., Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. Food Packag. Shelf Life, 30, 100745 (2021).
  32. Shaalan, N.M., Ahmed, F., Saber, O., Kumar, S., Gases in food production and monitoring: Recent advances in target chemiresistive gas sensors. Chemosensors, 10, 338 (2022).
  33. Andre, R.S., Mercante, L.A., Facure, M.H., Sanfelice, R.C., Fugikawa-Santos, L., Swager, T.M., Correa, D.S., Recent progress in amine gas sensors for food quality monitoring: novel architectures for sensing materials and systems. ACS sens., 7, 2104-2131 (2022).
  34. Osmolska, E., Stoma, M., Starek-Wojcicka, A., Application of biosensors, sensors, and tags in intelligent packaging used for food products-a review. Sensors, 22, 9956 (2022).
  35. Nasri, A., Petrissans, M., Fierro, V., Celzard, A., Gas sensing based on organic composite materials: review of sensor types, progresses and challenges. Mater. Sci. Semiconductor Process., 128, 105744 (2021).
  36. Chalklen, T., Jing, Q., Kar-Narayan, S., Biosensors based on mechanical and electrical detection techniques. Sensors, 20, 5605 (2020).
  37. Sim, D., Brothers, M.C., Slocik, J.M., Islam, A.E., Maruyama, B., Grigsby, C.C., Naik, R.R., Kim, S. S., Biomarkers and detection platforms for human health and performance monitoring: a review. Adv. Sci., 9, 2104426 (2022).
  38. Kumar, V., Parida, S.N., Roy, S., Dhar, S., Bisai, K., Behera, B.K., Das, B.K., An overview of modern biotechnological tools in aquatic food production-a review. Ann. Anim. Sci., 24, 13-25 (2024).
  39. Shao, P., Liu, L., Yu, J., Lin, Y., Gao, H., Chen, H., Sun, P., An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci. Technol., 118, 285-296 (2021).
  40. Mahanti, N.K., Shivashankar, S., Chhetri, K.B., Kumar, A., Rao, B.B., Aravind, J., Swami, D.V., Enhancing food authentication through e-nose and e-tongue technologies: current trends and future directions. Trends Food Sci. Technol., 150, 104574 (2024).
  41. Kuswandi, B., 2020. Active and intelligent packaging, safety, and quality controls. Fresh-cut fruits and vegetables, Academic Press, Cambridge, England, pp. 243-294.
  42. Khedr, E.H., Al-Khayri, J.M., 2024. Biosensors and nanosensors for determination of harvest quality parameters and fruit handling processes monitoring. In innovative methods in horticultural crop improvement: biosensors and nanosensors, Springer, Switzerland, pp. 143-190.
  43. Wen, T., Sang, M., Wang, M., Han, L., Gong, Z., Long, X., Xiong, H., Peng, H. Rapid detection of d-limonene emanating from citrus infestation by Bactrocera dorsalis (Hendel) using a developed gas-sensing system based on QCM sensors coated with ethyl cellulose. Sens. Actuators B: Chem., 328, 129048 (2021).
  44. Gharibzahedi, S.M.T., Altintas, Z., State-of-the-art sensor technologies for tracking SARS-CoV-2 in contaminated food and packaging: Towards the future techniques of food safety assurance. TrAC Trends Analyt. Chem., 170, 117473 (2023).
  45. Halder, S., Shrikrishna, N.S., Sharma, R., Bhat, P., Gandhi, S., Raising the bar: exploring modern technologies and biomaterials for enhancing food safety and quality-a comprehensive review. Food Control, 159, 110287 (2024).
  46. Feng, H., Wang, X., Duan, Y., Zhang, J., Zhang, X. Applying blockchain technology to improve agri-food traceability: a review of development methods, benefits and challenges. J. Clean. Prod., 260, 121031 (2020).
  47. Narayanan, H., Luna, M.F., von Stosch, M., Cruz Bournazou, M.N., Polotti, G., Morbidelli, M., Butte, A. and Sokolov, M., Bioprocessing in the digital age: the role of process models. Biotechnol. J., 15, e1900172 (2020).
  48. Thiede, S., Sullivan, B., Damgrave, R., Lutters, E., Real-time locating systems (RTLS) in future factories: technology review, morphology and application potentials. Procedia CIRP, 104, 671-676 (2021).
  49. Castro, P.M., Sarmento, B., Madureira, A.R., Pintado, M.E., 2019. Organic nanocomposites for the delivery of bioactive molecules. Natural polysaccharides in drug delivery and biomedical applications, Academic Press, Cambridge, England, pp. 471-493.
  50. Meereboer, K.W., Misra, M., Mohanty, A.K., Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem., 22, 5519-5558 (2020).
  51. Perera, K.Y., Jaiswal, S., Jaiswal, A.K., A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging. Food Chem., 376, 131912 (2022).
  52. Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., Seo, J., ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int., 38, 537-565 (2022).
  53. Okocha, R.C., Olatoye, I.O., Adedeji, O.B., Food safety impacts of antimicrobial use and their residues in aquaculture. Public health Rev., 39, 21 (2018).
  54. Park, Y.W., Kim, S.M., Lee, J.Y., Jang, W., Application of biosensors in smart packaging. Mol. Cell. Toxicol., 11, 277-285 (2015).
  55. Raghu, H.V., Parkunan, T., Kumar, N., Application of nanobiosensors for food safety monitoring. Environ. Nanotechnol., 4, 93-129 (2020).
  56. Singh, K., 2020. Nanosensors for food safety and environmental monitoring. Nanotechnology for food, agriculture, and environment, Springer, Switzerland, pp. 63-84.
  57. Thakur, M., Wang, B., Verma, M.L., Development and applications of nanobiosensors for sustainable agricultural and food industries: Recent developments, challenges and perspectives. Environ. Technol. Inno., 26, 102371 (2022).
  58. Lange, J., Wyser, Y., Recent innovations in barrier technologies for plastic packaging-a review. Packag. Technol. Sci., 16, 149-158 (2003).
  59. Moran, K.L.M., Fitzgerald, J., McPartlin, D.A., Loftus, J.H., O'Kennedy, R. Biosensor-based technologies for the detection of pathogens and toxins. Compr. Anal. Chem.,74, 93-120 (2016).
  60. Adley, C.C., Past, present and future of sensors in food production. Foods, 3, 491-510 (2014).
  61. Neethirajan, S., Ragavan, V., Weng, X., Chand, R., Biosensors for sustainable food engineering: challenges and perspectives. Biosensors, 8, 23 (2018).
  62. Yousefi, H., Su, H.M., Imani, S.M., Alkhaldi, K.,M. Filipe, C.D., Didar, T.F., Intelligent food packaging: a review of smart sensing technologies for monitoring food quality. ACS sens., 4, 808-821 (2019).
  63. Potyrailo, R. A. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev., 116, 11877-11923 (2016).
  64. Tyagi, P., Salem, K.S., Hubbe, M.A., Pal, L., Advances in barrier coatings and film technologies for achieving sustainable packaging of food products-a review. Trends Food Sci. Technol., 115, 461-485 (2021).
  65. Hassoun, A., Boukid, F., Ozogul, F., Ait-Kaddour, A., Soriano, J.M., Lorenzo, J.M., Perestrelo, R., Galanakis, C.M., Bono, G., Bouyahya, A., Bhat, Z., Smaoui, S., Jambrak, A.R., Camara, J.S., Creating new opportunities for sustainable food packaging through dimensions of industry 4.0: New insights into the food waste perspective. Trends Food Sci. Technol., 142, 104238 (2023).
  66. Sarfraz, J., Gulin-Sarfraz, T., Nilsen-Nygaard, J., Pettersen, M.K., Nanocomposites for food packaging applications: An overview. Nanomaterials, 11, 10 (2020).
  67. Garavand, F., Cacciotti, I., Vahedikia, N., Rehman, A., Tarhan, O., Akbari-Alavijeh, S., Shaddel, R., Rashidinejad, A., Nejatian, M., Jafarzadeh, S., Azizi-Lalabadi, M., A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Crit. Rev. Food Sci. Nutr., 62, 1383-1416 (2022).
  68. Mishra, S., Bharagava, R.N., More, N., Yadav, A., Zainith, S., Mani, S., Chowdhary, P., 2019. Heavy metal contamination: an alarming threat to environment and human health. Environmental biotechnology: for sustainable future, Springer, Singapore, pp. 103-125.