DOI QR코드

DOI QR Code

A Review on Alpha Imaging System for Targeted Alpha Therapy

  • Hyun Su Lee (Korea Institute of Radiological and Medical Sciences) ;
  • Jong-Guk Kim (Korea Institute of Radiological and Medical Sciences) ;
  • Byoungsoo Kim (Korea Institute of Radiological and Medical Sciences) ;
  • Il-Han Lim (Korea Institute of Radiological and Medical Sciences) ;
  • Choong Mo Kang (Korea Institute of Radiological and Medical Sciences) ;
  • Kwangil Kim (Korea Institute of Radiological and Medical Sciences) ;
  • Kyochul Lee (Korea Institute of Radiological and Medical Sciences)
  • Received : 2024.05.07
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

Targeted alpha therapy (TAT) harnesses the potent cytotoxicity of alpha particles emitted by radioisotopes to selectively eradicate cancer cells while minimizing damage to surrounding healthy tissues. Developing radiopharmaceutical for TAT, alpha particle imaging devices are used to identify distribution and behavior of the radiopharmaceutical in body, to evaluate efficacy and safety of the radiopharmaceutical. This paper explores the challenges and advancements in alpha particle imaging devices for TAT. Researchers are turning to innovative alpha particle imaging devices capable of directly detecting alpha particles to achieve higher spatial resolution and accuracy in mapping radioisotope distribution within organs. This review surveys the landscape of alpha particle imaging devices developed worldwide, including scintillator based-, semiconductor based-, and gas detector based systems. Their underlying principles, unique features, and strategies for enhancing performance are examined. By shedding light on the state-of-the-art technologies supporting advancements in TAT research, this review aims to introduce the ongoing efforts to refine the vision on biodistribution of radiopharmaceuticals for TAT.

Keywords

Acknowledgement

This work was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by MSIT, Republic of Korea (No. 50461-2024).

References

  1. Allen BJ. Targeted alpha therapy: evidence for potential efficacy of alpha-immunoconjugates in the management of micrometastatic cancer. Australas Radiol 1999;43(4):480-6.
  2. Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, Morgenstern A, Sgouros G. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res 2009; 69(23):8941-8.
  3. Peter R, Sandmaier BM, Dion MP, Frost SHL, Santos EB, Kenoyer A, Hamlin DK, Wilbur D S, Stewart RD, Fisher DR, Vetter K, Seo Y, Miller BW. Small-scale (sub-organ and cellular level) alpha-particle dosimetry methods using an iQID digital autoradiography imaging system. Scientific Reports 2022;12(1):17934.
  4. Benabdallah N, Scheve W, Dunn N, Silvestros D, Schelker P, Abou D, Jammalamadaka U, Laforest R, Li Z, Liu J, Ballard DH, Maughan NM, Gay H, Baumann BC, Hobbs RF, Rogers B, Iravani A, Jha AK, Dehdashti F, Thorek DLJ. Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics 2021;11(20):9721-37.
  5. Neti PV, Howell RW. Biological response to nonuniform distributions of (210)Po in multicellular clusters. Radiat Res 2007;168(3):332-40.
  6. Back T, Jacobsson L. The alpha-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of alpha-particles. J Nucl Med 2010;51(10):1616-23.
  7. Yamamoto S, Nitta H. Development of an event-by-event based radiation imaging detector using GGAG: A ceramic scintillator for X-ray CT. Nucl Instrum Methods Phys Res A 2018;900:25-31.
  8. Yamamoto S, Nitta H. Pulse shape discriminations of different types of radiation on GGAG imaging detector. Nucl Instrum Methods Phys Res A 2018;910:174-83.
  9. Yamamoto S, Watabe T, Kaneda-Nakashima K, Shirakami Y, Ooe K, Toyoshima A, Teramoto T, Shinohara A, Hatazawa J. Development of GGAG alpha camera system for targeted alpha radionuclide therapy research. J Instrum 2021;16(6):P06009
  10. Yamamoto S, Ukon N, Washiyama K, Hasegawa K, Kamada K, Yoshino M, Yoshikawa A. Development of a phoswich detector composed of ZnS(Ag) and YAP(Ce) for astatine-211 imaging. Radiat Meas 2022;153:106734
  11. Anger HO. Use of a gamma-ray pinhole camera for in vivo studies. Nature 1952;170.4318:200-1.
  12. Maas M, Laan DJ, Schaart D, Huizenga J, Brouwer JC, Bruyndonckx P, Leonard S, Lemaitre C, Eijk CWE. Experimental characterization of monolithic-crystal small animal PET detectors read out by APD arrays. IEEE Trans Nucl Sci 2006;53:1071-7.
  13. Moore SK, Hunter WC, Furenlid LR, Barrett HH. Maximum-likelihood estimation of 3D event position in monolithic scintillation crystals: experimental results. IEEE Nucl Sci Symp Conf Rec 1997;5:3691-4.
  14. Kim JG, Kim G, Lee HS, Kim B, Lim IH, Kim K, Lee K. Dual-isotope imaging method for Actinium-225 and Bismuth-213 using alpha imaging detector. Appl Radiat Isot 2024;206:111236.
  15. Strulab D, Santin G, Lazaro D, Breton V, Morel C. GATE (Geant4 application for tomographic emission): a PET/SPECT general-purpose simulation platform. Nucl Phys B Proc Suppl 2003;125:75-9.
  16. Kim G, Lim I, Song K, Kim JG. Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector. Nucl Eng Technol 2022;54(6):2204-12.
  17. Vandenberghe S, D'Asseler Y, Van de Walle R, Kauppinen T, Koole M, Bouwens L, Van Laere K, Lemahieu I, Dierckx RA. Iterative reconstruction algorithms in nuclear medicine. Comput Med Imaging Graph 2001;25(2):105-11.
  18. Back T, Jacobsson L. The alpha-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of alpha-particles. J Nucl Med 2010;51(10):1616-23.
  19. Miller BW, Gregory SJ, Fuller ES, Barrett HH, Barber HB, Furenlid LR. The iQID camera: An ionizing-radiation quantum imaging detector. Nucl Instrum Methods Phys Res A 2014;767:146-52.
  20. Miller BW, Frost SH, Frayo SL, Kenoyer AL, Santos E, Jones JC, Green DJ, Hamlin DK, Wilbur DS, Fisher DR, Orozco JJ, Press OW, Pagel JM, Sandmaier BM. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera. Med Phys 2015;42(7):4094-105.
  21. lopart X, Ballabriga R, Campbell M, Tlustos L, Wong W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl Instrum Methods Phys Res A 2007;581(1-2):485-94.
  22. A L Darwish R, Staudacher AH, Bezak E, Brown MP. Autoradiography imaging in targeted alpha therapy with Timepix detector. Comput Math Methods Med 2015;2015:612580.
  23. Lefeuvre H, Donnard J, Descostes M, Billon S, Duval S, Oger T, Toubon H, Sardini P. Spectroscopic autoradiography of alpha particles using a parallel ionization multiplier gaseous detector. Nucl Instrum Methods Phys Res A 2022;1035:166807.
  24. Hilke HJ. Time projection chambers. Rep Prog Phys 2010;73(11):116201.
  25. Sauli F, Sharma A. Micropattern gaseous detectors. Annu Rev Nucl Part Sci 1999;49(1):341-88.
  26. Bongrand A, Duval S, Donnard J, Champion J. Latest development of α emitter imaging and quantification on a large Field Of View for Targeted Alpha Therapy applications. In: Proceedings of the 11th International Conference on Isotopes (11ICI); 2023 July.
  27. Giomataris Y, Rebourgeard P, Robert JP, Charpak G. MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl Instrum Methods Phys Res A 1996;376(1):29-35.
  28. Handula M, Beekman S, Konijnenberg M, Stuurman D, de Ridder C, Bruchertseifer F, Morgenstern A, Denkova A, de Blois E, Seimbille Y. First preclinical evaluation of [225Ac] Ac-DOTA-JR11 and comparison with [177Lu] LuDOTA-JR11, alpha versus beta radionuclide therapy of NETs. EJNMMI Radiopharm Chem 2023;8(1):13.