DOI QR코드

DOI QR Code

Reducing stiffening and curling in micro-plates via corrugations

  • Bahi Bakeer (Design and Production Engineering Department, Ain Shams University) ;
  • Adel Elsabbagh (Design and Production Engineering Department, Ain Shams University) ;
  • Mohammed Hedaya (Design and Production Engineering Department, Ain Shams University)
  • Received : 2023.10.28
  • Accepted : 2024.10.18
  • Published : 2024.11.10

Abstract

Micro-beams and micro-plates suffer from residual stress problems such as stiffening and curling. This affects the performance of these micro-structures in MEMS applications. It is found from previous literature that minimizing both stiffening and curling is a challenging issue. This paper proposes double corrugations in both longitudinal and transverse directions as a remedy to this problem. A Finite Element model is developed and validated with results in literature. A parametric study is implemented to study the effect of number of corrugations and corrugation height on the micro-plate performance as compared to a flat one with the same stiffness. Proposed corrugations result in reducing stiffening, and curling, by 90%, and 87%, respectively. The corrugations concept may be used to improve the performance of many MEMS applications such as pressure sensors, resonators, and RF switches. In the case of RF switches for instance, the proposed method achieved a reduction of 39% in switching time.

Keywords

References

  1. Bakeer, B., Elsabbagh, A. and Hedaya, M. (2024), "Ribbing of micro-plates as a remedy for stiffening and curling resulting during fabrication", J. Mech. Sci. Technol., 38(12).
  2. Bakeer, B., Elsabbagh, A. and Hedaya, M. (2021), "Design of micro-plates subjected to residual stresses in Microelectromechanical Systems (MEMS) applications", Port-Said Eng. Res. J., 25(2), 165-169. https://doi.org/10.21608/pserj.2021.54511.1084.
  3. Bakeer, B., Elsabbagh, A. and Hedaya, M. (2021), "Parametric optimization of non-prismatic micro-plates to reduce stiffening and curling initiated during fabrication", IOP Conf. Ser.: Mater. Sci. Eng., 1172(1), 012021. https://doi.org/10.1088/1757-899x/1172/1/012021.
  4. Bansal, D., Bajpai, A., Kumar, P., Kaur, M., Kumar, A., Chandran, A. and Rangra, K. (2016), "Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling", J. Micromech. Microeng., 27(2), 024001. https://doi.org/10.1088/1361-6439/aa4ea1.
  5. COMSOL Multiphysics (2015), MEMS Module, Application Library Manual.
  6. Demirel, K., Yazgan, E., Demir, S. and Akin, T. (2017), "A folded leg Ka-band RF MEMS shunt switch with amorphous silicon (a-Si) sacrificial layer", Microsyst. Technol., 23, 1191-1200. https://doi.org/10.1007/s00542-016-2892-5.
  7. Gupta, A., Barron, L., Brainin, M. and Lee, J.B. (2014), "Reduction of out-of-plane warpage in surface micromachined beams using corrugation", J. Micromech. Microeng., 24(6), 065023. https://doi.org/10.1088/0960-1317/24/6/065023.
  8. Kaajakari, V. (2009), Practical MEMS, Small Gear Publishing.
  9. Kim, H., Choi, J.H., Park, Y., Choi, S. and Sim, G.D. (2023), "Mechanical characterization of thin films via constant strain rate membrane deflection experiments", J. Mech. Phys. Solid., 173, 105209. https://doi.org/10.1016/j.jmps.2023.105209.
  10. Kim, K., Chun, S., Park, B. and Han, S. (2021), "Precast prestressed concrete pavement (PPCP): Effect of thermal gradient on curling deflection and stress", Constr. Build. Mater., 274, 121966. https://doi.org/10.1016/j.conbuildmat.2020.121966.
  11. Le, X.L., Kim, K. and Choa, S.H. (2022), "Analysis of temperature stability and change of resonant frequency of a capacitive MEMS accelerometer", Int. J. Prec. Eng. Manuf., 23(3), 347-359. https://doi.org/10.1007/s12541-021-00602-1.
  12. Lin, H.Y. and Fang, W. (2000), "Rib-reinforced micromachined beam and its applications", J. Micromech. Microeng., 10(1), 93. https://doi.org/10.1088/0960-1317/10/1/313.
  13. Meng, H., Jin, D., Li, L. and Liu, Y. (2022), "Analytical and numerical study on centrifugal stiffening effect for large rotating wind turbine blade based on NREL 5 MW and WindPACT 1.5 MW models", Renew. Energy, 183, 321-329. https://doi.org/10.1016/j.renene.2021.11.006.
  14. Nieminen, H., Ermolov, V., Silanto, S., Nybergh, K. and Ryhanen, T. (2004), "Design of a temperature-stable RF MEM capacitor", J. Microelectromech. Syst., 13(5), 705-714. https://doi.org/10.1109/JMEMS.2004.832192.
  15. Philippine, M.A., Sigmund, O., Rebeiz, G.M. and Kenny, T.W. (2012), "Topology optimization of stressed capacitive RF MEMS switches", J. Microelectromech. Syst., 22(1), 206-215. https://doi.org/10.1109/JMEMS.2012.2224640.
  16. Powell, M.J. (2009), "The BOBYQA algorithm for bound constrained optimization without derivatives", Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26, 26-46. https://doi.org/10.1.1.443.7693. https://doi.org/10.1.1.443.7693
  17. Rebeiz, G.M. (2003), RF MEMS, Theory, Design, and Technology, Wiley, New York.
  18. Reines, I., Pillans, B. and Rebeiz, G.M. (2010), "Thin-film aluminum RF MEMS switched capacitors with stress tolerance and temperature stability", J. Microelectromech. Syst., 20(1), 193-203. https://doi.org/10.1109/JMEMS.2010.2090505.
  19. Saleem, M.M. and Nawaz, H. (2019), "A systematic review of reliability issues in RF-MEMS switches", Micro Nanosyst., 11(1), 11-33. https://doi.org/10.2174/1876402911666190204113856.
  20. Shekhar, S. and Vinoy, K.J. (2019), "Thermally robust thin-metal membrane capacitive RF MEMS switch", ISSS J. Micro Smart Syst., 8(1), 31-40. https://doi.org/10.1007/s41683-019-00037-x.
  21. Song, Y.T., Lee, H.Y. and Esashi, M. (2007), "A corrugated bridge of low residual stress for RF-MEMS switch", Sensor. Actuat. A: Phys., 135(2), 818-826. https://doi.org/10.1016/j.sna.2006.07.030.
  22. Tran, A.V., Zhang, X. and Zhu, B. (2019), "Effects of temperature and residual stresses on the output characteristics of a piezoresistive pressure sensor", IEEE Access, 7, 27668-27676. https://doi.org/10.1109/ACCESS.2019.2901846.
  23. Wang, Q., Wang, W., Fang, L., Zhou, C. and Fan, B. (2021), "Study of residual stress compensation in continuous membrane micromirrors based on surface micromachining processes", Coating., 11(3), 289. https://doi.org/10.3390/coatings11030289.
  24. Yu, Y. (2015), "Brief and accurate analytical approximations to nonlinear static response of curled cantilever micro beams", Struct. Eng. Mech., 56(3), 461-472. https://doi.org/10.12989/sem.2015.56.3.461.