DOI QR코드

DOI QR Code

Synthesis of Iron Phosphate Via Coprecipitation Method for LiFePO4 Cathode

  • Jeongwoo Lim (Department of Material Science, Chungnam National University) ;
  • Seokwon Seo (Department of Material Science, Chungnam National University) ;
  • Chunjoong Kim (Department of Material Science, Chungnam National University)
  • Received : 2024.09.22
  • Accepted : 2024.10.11
  • Published : 2024.10.27

Abstract

In this study, ferric phosphate precursors were prepared by controlling precipitation time, and the resulting LiFe PO4 active materials were thoroughly investigated. Microscale LiFePO4 cathode materials, designed for high energy density at the cell level, were successfully synthesized through a 10 h co-precipitation. As the reaction time increased, smaller primary particles were aggregated more tightly, and the secondary particles exhibited a more spherical shape. Meanwhile, ammonia did not work effectively as a complexing agent. The carbon coated LiFePO4 (LiFePO4/C) synthesized from the 10 h ferric phosphate precursor exhibited larger primary and secondary particle sizes, a lower specific surface area, and higher crystallinity due to the sintering of the primary particles. Enhanced battery performance was achieved with the LiFePO4/C that was synthesized from the precursor with the smaller size, which exhibited the discharge capacity of 132.25 mAh·g-1 at 0.1 C, 70 % capacity retention at 5 C compared with 0.1 C, and 99.9 % capacity retention after the 50th cycle. The better battery performance is attributed to the lower charge transfer resistance and higher ionic conductivity, resulting from smaller primary particle sizes and a shorter Li+ diffusion path.

Keywords

Acknowledgement

This study was supported by Chungnam National University.

References

  1. J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez and J. M. Marquez-Barja, Smart Cities, 4, 372 (2021). 
  2. X. Sun, Z. Li, X. Wang and C. Li, Energies, 13, 90 (2020). 
  3. D. Deng, Energy Sci. Eng., 3, 385 (2015). 
  4. J. N. Reimers and J. R. Dahn, J. Electrochem. Soc., 139, 2091 (1992). 
  5. F. Schipper and D. Aurbach, Russ. J. Electrochem., 52, 1095 (2016). 
  6. S.-P. Chen, D. Lv, J. Chen, Y.-H. Zhang and F.-N. Shi, Sustainable Energy Fuels, 36, 1232 (2022). 
  7. K. Hoang and M. Johannes, Chem. Mater., 23, 3003 (2011). 
  8. F. Astuti, V. L. Maghfirohtuzzoimah, S. H. Intifadhah, P. Az-Zahra, R. Arifin, W. Klysubun, M. Zainuri and Darminto, J. Phys.: Conf. Ser., 1951, 012007 (2021). 
  9. G. Qin, Q. Ma and C. Wang, Electrochim. Acta, 115, 407 (2014). 
  10. M. M. Doeff, Y. Hu, F. McLarnon and R. Kostecki, Electrochem. Solid-State Lett., 6, A207 (2003). 
  11. Z. Tian, S. Liu, F. Ye, S. Yao, Z. Zhou and S. Wang, Appl. Surf. Sci., 305, 427 (2014). 
  12. J. N. Bridson, S. E. Quinlan and P. R. Tremaine, Chem. Mater., 10, 763 (1998). 
  13. H. Choi, J. Y. Seo and C. S. Kim, IEEE Trans. Magn., 57, 2200305 (2021). 
  14. K. Okada, I. Kimura and K. Machida, RSC Adv., 8, 5848 (2018). 
  15. C. Nan, J. Lu, L. Li, L. Li, Q. Peng and Y. Li, Nano Res., 6, 469 (2013). 
  16. D. Saikia, J. R. Deka, C.-J. Chou, C.-H. Lin, Y.-C. Yang and H.-M. Kao, ACS Appl. Energy Mater., 2, 1121 (2019). 
  17. Y. Zhang, P. Xin and Q. Yao, J. Alloys Compd., 741, 404 (2018). 
  18. R. Yang, E. Kang, B. Jiang and J. H. Ahn, Nanoscale Res. Lett., 7, 40 (2012). 
  19. M.-Y. Cho, S.-M. Park, K.-B. Kim, J.-W. Lee and K. C. Roh, J. Electrochem. Sci. Technol., 3, 135 (2012). 
  20. X. Lou, B. Hu, J. Huang and T. Li, in Proceedings of the AASRI International Conference on Industrial Electronics and Applications (London, UK, June 2015). ed. Y. Wu, W. Deng (Atlantis Press, Amsterdam, Netherlands, 2015) p.15. 
  21. Z.-R. Chang, H.-J. Lv, H. Tang, X.-Z. Yuan and H. Wang, J. Alloys Compd., 501, 14 (2010). 
  22. D. Schunemann , T. Langer , M. Binnewies and R. Pottgen, Z. Phys. Chem. (Berlin, Ger.), 226, 167 (2012). 
  23. Y. Zhu, S. Tang, H. Shi and H. Hu, Ceram. Int., 40, 2685 (2014). 
  24. T. Zhang, D. Gong, S. Lin and J. Yu, Chem. Eng. J., 449, 137830 (2022). 
  25. J. Wang and X. Sun, Energy Environ. Sci., 5, 5163 (2012). 
  26. T. Zhang, S. Lin and J. Yu, Ind. Eng. Chem. Res., 61, 5181 (2022).