DOI QR코드

DOI QR Code

Heat Treatment Optimization of Small-Sized Lithium Nickel Oxide Using Precursors Synthesized by Glycine as Chelating Agent

  • Nayun Kim (Department of Materials Science and Engineering, Chungnam National University) ;
  • Chunjoong Kim (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2024.09.22
  • Accepted : 2024.10.07
  • Published : 2024.10.27

Abstract

Lithium-ion batteries are widely used in various advanced devices, including electric vehicles and energy storage devices. As the application range of lithium-ion batteries expands, it will be increasingly important to improve their gravimetric and volumetric energy density. Layer-structured oxide materials have been widely adopted as cathode materials in Li-ion batteries. Among them, LiNiO2 has attracted interest because of its high theoretical capacity, ~274 mAh g-1, assuming reversible one Li+-(de)intercalation from the structure. Presently, such layered structure cathode materials are prepared by calcination of precursors. The precursors are typically hydroxides synthesized by coprecipitation reaction. Precursors synthesized by coprecipitation reaction have a spherical morphology with a size larger than 10 ㎛. Spherical precursors in the several micrometer range are difficult to obtain due to the limited coprecipitation reaction time, and can lead to vigorous collisions between the precursor particles. In this study, spherical and small-sized Ni(OH)2 precursors were synthesized using a new synthesis method instead of the conventional precipitation method. The highest capacity, 170 mAh g-1, could be achieved in the temperature range of 730~760 ℃. The improved capacity was confirmed to be due to the higher quality of the layered structure.

Keywords

Acknowledgement

This study is supported by Chungnam National University.

References

  1. G. Zubi, R. Dufo-Lopez, M. Carvalho and G. Pasaoglu, Renewable Sustainable Energy Rev., 89, 292 (2018).
  2. Y. Ding, Z. P. Cano, A. Yu, J. Lu and Z. Chen, Electrochem. Energy Rev., 2, 1 (2019).
  3. S. Abada, G. Marlair, A. Lecocq, M. Petit, V. Sauvant-Moynot and F. Huet, J. Power Sources, 306, 178 (2016).
  4. A. Manthiram, ACS Cent. Sci., 3, 1063 (2017).
  5. M. Li, J. Lu, Z. Chen and K. Amine, Adv. Mater., 30, 1800561 (2018).
  6. F. Schipper, P. K. Nayak, E. M. Erickson, S. F. Amalraj, O. Srur-Lavi, T. R. Penki, M. Talianker, J. Grinblat, H. Sclar, O. Breuer, C. M. Julien, N. Munichandraiah, D. Kovacheva, M. Dixit, D. T. Major, B. Markovsky and D. Aurbach, Inorganics, 5, 32 (2017).
  7. S. G. Booth, A. J. Nedoma, N. N. Anthonisamy, P. J. Baker, R. Boston, H. Bronstein, S. J. Clarke, E. J. Cussen, V. Daramalla, M. De Volder, S. E. Dutton, V. Falkowski, N. A. Fleck, H. S. Geddes, N. Gollapally, A. L. Goodwin, J. M. Griffin, A. R. Haworth, M. A. Hayward, S. Hull, B. J. Inkson, B. J. Johnston, Z. Lu, J. L. MacManus-Driscoll, X. Martinez De Irujo Labalde, I. McClelland, K. McCombie, B. Murdock, D. Nayak, S. Park, G. E. Perez, C. J. Pickard, L. F. J. Piper, H. Y. Playford, S. Price, D. O. Scanlon, J. C. Stallard, N. Tapia-Ruiz, A. R. West, L. Wheatcroft, M. Wilson, L. Zhang, X. Zhi, B. Zhu and S. A. Cussen, APL Mater., 9, 109201 (2021).
  8. H. Ronduda, M. Zybert, A. Szczesna-Chrzan, T. Trzeciak, A. Ostrowski, D. Szymanski, W. Wieczorek, W. RarogPilecka and M. Marcinek, Nanomaterials, 10, 2018 (2020).
  9. W. Yan, S. Yang, Y. Huang, Y. Yang and Y. Guohui, J. Alloys Compd., 819, 153048 (2020).
  10. F. Wang, P. Barai, O. Kahvecioglu, K. Z. Pupek, J. Bai and V. Srinivasan, J. Mater. Res., 37, 3197 (2022).
  11. X. Luo, X. Wang, L. Liao, X. Wang, S. Gamboa and P. J. Sebastian, J. Power Sources, 161, 601 (2006).
  12. R. Weber, H. Li, W. Chen, C.-Y. Kim, K. Plucknett and J. R. Dahn, J. Electrochem. Soc., 167, 100501 (2020).
  13. J. Valikangas, P. Laine, M. Hietaniemi, T. Hu, P. Tynjala and U. Lassi, Appl. Sci, 10, 8988 (2020).
  14. Y. Gao, X. Wang, J. Geng, F. Liang, M. Chen and Z. Zou, J. Electron. Mater., 52, 72 (2023).
  15. C.-Y. Kang, S. Oh, T. Y. Shim and S.-H. Lee, Electron. Mater. Lett, 19, 374 (2023).
  16. U.-H. Kim, G.-T. Park, P. Conlin, N. Ashburn, K. Cho, Y.-S. Yu, D. A. Shapiro, F. Maglia, S.-J. Kim, P. Lamp, C. S. Yoon and Y.-K. Sun, Energy Environ. Sci., 14, 1573 (2021).
  17. A. M. Pillai, P. S. Salini, B. John, V. S. Nair, K. Jalaja, S. SarojiniAmma and M. T. Devassy, Ionics, 28, 5005 (2022).
  18. H.-H. Ryu, S.-B. Lee and Y.-K. Sun, J. Solid State Electrochem., 26, 2097 (2022).
  19. Z. Fang, L. Yan, Z. Wu and X. Zhang, Ionics, 30, 2469 (2024).
  20. Z. Tang, D. Feng, Y. Xu, L. Chen, X. Zhang and Q. Ma, Batteries, 9, 156 (2023).
  21. S. Chennakrishnan, V. Thangamuthu, M. Natarajan and D. Velauthapillai, J. Mater. Sci.: Mater. Electron., 34, 1926 (2023).
  22. Z. Chen, D.-J. Lee, Y.-K. Sun and K. Amine, MRS Bull., 36, 498 (2011).
  23. H. Ronduda, M. Zybert, A. Szczesna-Chrzan, T. Trzeciak, A. Ostrowski, D. Szymanski, W. Wieczorek, W. Rarog-Pilecka and M. Marcinek, Nanomaterials, 10, 2018 (2020).
  24. M. Hietaniemi, T. Hu, J. Valikangas, J. Niittykoski and U. Lassi, J. Appl. Electrochem., 51, 1545 (2021).
  25. W. Chaisan, O. Khamman, R. Yimnirun and S. Ananta, J. Mater. Sci., 42, 4624 (2007).
  26. C. Suryanarayana, J. Mater. Sci., 53, 13364 (2018)