Acknowledgement
The authors express their sincere thanks to the Editor and anonymous referees for their valuable suggestions in the improvement of the paper.
References
- Z. Ahsan, On a geometrical symmetry of the space-time of general relativity, Bull. Cal. Math. Soc. 97 (2005), no. 3, 191-200.
- Z. Ahsan and M. Ali, Curvature tensor for the space-time of general relativity, Int. J. Geom. Methods Mod. Phys. 14 (2017), 1-14.
- G. Y. Rainich, Electrodynamics in the general relativity theory, Trans. Amer. Math. Soc. 27 (1952), 106-136. https://doi.org/10.1090/S0002-9947-1925-1501302-6
- G. P. Pokhariyal, Relativistic significance of curvature tensors, Int. J. Math & Math. Sci. 5 (1982), no. 1, 133-139. https://doi.org/10.1155/S0161171282000131
- G. P. Pokhariyal, Study of W3-curvature tensor in the space-time of general relativity, ICASTOR Jour. of Mathematical Sci. 15 (2021), no. 2, 1-7.
- S. K. Moindi, F. Njui, and G. P. Pokhariyal, A study of W5-symmetric K-contact Riemannian manifold, Int. Jour. of Trd. in R & D. 5 (2018), no. 3, 749-751.
- M. Vasiulla, M. Ali, and Inan Unal, A study of mixed super quasi-Einstein manifolds with applications to general relativity, Int. J. Geom. Methods Mod. Phys. 21 (2024), no. 9, Paper No. 2450177.
- M. Vasiulla and M. Ali, Pseudo generalized quasi-Einstein manifolds with applications to general relativity, Filomat 38 (2024), no. 2, 553-567.