DOI QR코드

DOI QR Code

칼납자루(Acheilognathus koreensis)의 서식처별 생태특성 및 건강도 차이

Difference in ecological characteristics and health status of oily bitterling(Acheilognathus koreensis) among habitats

  • 이선호 (국립수산과학원 중앙내수면연구소) ;
  • 최보형 (국립수산과학원 중앙내수면연구소) ;
  • 허승 (국립수산과학원 중앙내수면연구소) ;
  • 홍창기 (국립수산과학원 중앙내수면연구소)
  • Sun Ho Lee (Inland Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Bohyung Choi (Inland Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Seung Heo (Inland Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Chang Gi Hong (Inland Fisheries Research Institute, National Institute of Fisheries Science)
  • 투고 : 2024.06.14
  • 심사 : 2024.09.12
  • 발행 : 2024.09.30

초록

고유종(endemic species)은 특정 지역 내에서 자연적으로 서식 및 생육하는 생물종으로 정의되며, 지역 절멸의 가능성이 높아 지속적인 관리가 필요하다. 본 연구에서는 금강과 섬진강, 탐진강 수계에서 채집된 칼납자루 시료를 대상으로 안정동위원소 분석 기법과 전장-체중 관계(LWRs) 및 비만도 지수(K)를 바탕으로 각 서식처 개체군의 생태지위면적, 주요 먹이원과 서식지의 차이를 확인하고 생태특성, 성장 및 비만도를 비교하였다. 그 결과, 금강과 탐진강 칼납자루 개체군의 섭식특성은 유사한 반면, 섬진강에 서식하는 칼납자루는 부유성 먹이원의 기여도가 높은 것으로 나타나 다른 서식처 개체군과 먹이원의 차이가 있는 것으로 판단된다. 기저생물인 POM의 δ13C 차이를 감안하여 동위원소 면적을 보정(Δδ13CA.koreensis-POM)한 결과, 금강과 탐진강 개체군 간의 중첩 면적 비율은 증가하였다. LWR 결과, 부유성 먹이원의 기여도가 상대적으로 높은 것으로 판단되는 섬진강 서식 개체군의 b 값이 3.155로 성장도가 양호한 반면, 금강과 탐진강 개체군은 각각 2.888과 2.968로 상대적으로 낮은 성장도를 보였다. K 값의 변동은 금강에서 개체군의 크기가 성장할수록 K 값이 감소하는 경향을 보였으며, 섬진강은 개체군 크기 성장에 따른 K 값의 증가율이 가장 높게 나타나 LWRs의 b 값과 유사한 양상을 보였다. 본 연구는 각기 다른 칼납자루 서식지에서 주요 먹이원과 서식지 차이를 확인하고, 각 개체군의 생태특성과 성장 및 비만도를 비교하여 효율적이고 안정적인 칼납자루 개체군 및 서식처의 관리와 보전에 기초자료로 활용될 수 있을 것이다.

Endemic species are defined as taxa that naturally inhabit and grow within a specific area. Because they easily face regional extinction, continuous management is required. In this study, stable isotope analysis, length-weight relationships (LWRs), and condition factor (K) estimation were applied to oily bitterling Acheilognathus koreensis inhabiting three representative rivers including the Geum River basin, Seomjin River basin, and Tamjin River basin to compare ecological property and related biological conditions. Based on the corrected isotope value to account for difference in carbon isotope ratio (δ13C) of POM, Δδ13CA.koreensis-POM, estimated isotope niche areas of A. koreensis between Geum and Tamjin River populations were highly overlapped while those of the Seomjin River population were discriminated from other habitats, indicating differences in major diet sources among habitats. In addition, LWRs for the Seomjin River population showed a good growth with a b value of 3.155 compared to Geum and Tamjin River populations which showed relatively low growth rates of 2.888 and 2.968, respectively. Fluctuation of the K value of the A. koreensis tended to decrease with growth in the Geum River while that of the Seomjin River population exhibited the highest increasing trend. This study confirmed differences in diet resources among habitats for A. koreensis, which resulted growth and fatness variations for each population. Our results can be used as basic information for effective conservation and management strategies of A. koreensis populations.

키워드

과제정보

본 연구는 국립수산과학원의 연구비 지원(R2024017)으로 수행되었습니다.

참고문헌

  1. Adams SM. 2002. Biological Indicators of Aquatic Ecosystem Stress. American Fisheries Society. Bethesda, MD, USA.
  2. Ahlgren G, W Goedkoop, H Markensten, L Sonesten and M Boberg. 1997. Seasonal variations in food quality for pelagic and benthic invertebrates in Lake Erken - the role of fatty acids. Freshw. Biol. 38:555-570. https://doi.org/10.1046/j.1365-2427.1997.00219.x
  3. Anderson RO and RM Neumann. 1996. Length, weight and associated structural indices. pp. 477-481. In: Fisheries Techniques (Murphy BR and DW Willis, eds.). American Fisheries Society. Bethesda, MD, USA.
  4. Anderson RO and SJ Gutreuter. 1983. Length, weight and associated structural indices. pp. 283-300. In: Fisheries Techniques (Nielson LA and DL Johnson, eds.). American Fisheries Society. Bethesda, MD, USA.
  5. Baek SH, SH Park and JH Kim. 2020. Estimation of standard length-weight relationships of 10 freshwater fish in the South Korea for application of relative weight index. Korean J. Ichthyol. 32:55-62. https://doi.org/10.35399/ISK.32.2.3
  6. Bearhop S, CE Adams, S Waldron, RA Fuller and H Macleod. 2004. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73:1007-1012. https://doi.org/10.1111/j.0021-8790.2004.00861.x
  7. Busacker GP, IR Adelman, EM Goolish, CB Schreck and PB Moyle. 1990. Growth. pp. 363-387. In: Methods for Fish Biology (Schreck CB and PB Moyle, eds.). American Fisheries Society. Bethesda, MD, USA. https://doi.org/10.47886/9780913235584.ch11
  8. Chae BH, HB Song and JY Park. 2019. A Field Guide to the Freshwater Fishes of Korea. LG Evergreen Foundation. Seoul, Korea.
  9. Choi B, H Jo, K Park and IS Kwak. 2020. Isotopic evidence for ontogenetic shift in food resource utilization during the migration of the slipmouth Leiognathus nuchalis in Gwangyang Bay, Korea. Korean J. Ichthyol. 32:84-90. https://doi.org/10.35399/ISK.32.2.7
  10. Choi H, B Choi and KH Shin. 2017. Determination of trophic position using nitrogen isotope ration of individual amino acid in the Geum Estuary. Korean J. Ecol. Environ. 50:432-440. https://doi.org/10.11614/KSL.2017.50.4.432
  11. Choi JY, SK Kim, SW Hong, KS Jeong, GH La and GJ Joo. 2013. Zooplankton community distribution and food web structure in small reservoirs: influence of land uses around reservoirs and kittoral aquatic plant on zooplankton. Korean J. Ecol. Environ. 46:332-342. https://doi.org/10.11614/KSL.2013.46.3.332
  12. Dubois S, B Jean-Louis, B Bertrand and S Lefebvre. 2007. Isotope trophic-step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems. J. Exp. Mar. Biol. Ecol. 351:121-128. https://doi.org/10.1016/j.jembe.2007.06.020
  13. Froese R. 2006. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22:241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x
  14. Fry B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72:2293-2297. https://doi.org/10.2307/1941580
  15. Fulton TW. 1904. The rate of growth of fishes. pp. 141-241. In: Twenty-Second Annual Report, Part III. Fisheries Board of Scotland. Edinburgh, UK.
  16. Gal JK, G Ock, HK Park and KH Shin. 2016. The effect of summer monsoon on pelagic and littoral food webs in a large regulated reservoir(Lake Paldang, Korea): A stable isotope approach. J. Freshw. Ecol. https://doi.org/10.1080/02705060.2015.1136967
  17. Gal JK, MS Kim, YJ Lee, J Seo and KH Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen stable isotope ratios. Korean J. Limnol. 45:242-251.
  18. Jackson AL, R Inger, AC Parnell and S Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80:595-602. https://doi.org/10.1111/j.1365-2656.2011.01806.x
  19. Jeong SY, SH Shin, YG Jin, SM Ju and JS Lee. 2006. Abnormality of reproduction and organ structure of the oily bitterling, Acheilognathus koreensis from Isa stream. Korean J. Ichthyol. 18:87-96.
  20. Jeong SY, YG Jin and JS Lee. 2004. Effects of polychlorinated biphenyls (PCBs) on the reproduction of the oily bitterling, Acheilognathus koreensis (Teleostei: Cyprinidae). Korean J. Environ. Biol. 22:159-166.
  21. Keys AB. 1928. The weight-length relation in fishes. Proc. Natl. Acad. Sci. U. S. A. 14:922-925. https://doi.org/10.1073/pnas.14.12.922
  22. Kim CH, JY Park, MK Park, EJ Kang and JH Kim. 2006. Histological study of the minute tubercles on larval skin surface of a Korean endemic bitterling, Acheilognathus koreensis (Pisces, Cyprinidae), with its larval growth. Korean J. Ichthyol. 18:170-177.
  23. Kim CH, WK Lee, JH Lee and JM Beak. 2011. Reproduction study of Korean endemic species Acheilognathus koreensis. Korean J. Ichthyol. 23:150-157.
  24. Kim IS and CH Kim. 1990. A taxonomic study of the Korean bittering, Acheilognathus sp. (Pisces, Cyprinidae). Korean J. Zool. 33:241-245.
  25. Kim KH, JK Kim and KJ Hwang. 2007. Ultrastructure of spermatozoa of a Korean bitterling, Acheilognahus koreensis (Pisces, Cyprinidae). Korean J. Ichthyol. 19:286-291.
  26. Kim MS, JM Kim, JY Hwang, BK Kim, HS Cho, SJ Youn, SY Hong, OS Kwon and WS Lee. 2014a. Determination of the origin of particulate organic matter at the Lake Paldang using stable isotope ratios (δ13C, δ15N). Korean J. Ecol. Environ. 47:127-134. https://doi.org/10.11614/KSL.2014.47.2.127
  27. Kim MS, YJ Lee, KG An, BH Kim, SJ Hwang and KH Shin. 2014b. Allochthonous organic matter contribution to foodweb in Shingu agricultural reservoir after rainfall period. Korean J. Ecol. Environ. 47:53-61. https://doi.org/10.11614/KSL.2014.47.1.053
  28. Le Cren ED. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20:201-219. https://doi.org/10.2307/1540
  29. Lee KY, H Jang, Y Yun, S Park, JC Kim, J Lee and J Choi. 2014. Ecological diagnosis of the Gongjicheon water system using length-weight relationship and condition factor (K) of population of the Zacco platypus. J. Environ. Impact Assess. 23:137-149. https://doi.org/10.14249/eia.2014.23.2.137
  30. Lesniak PM and H Sakai. 1989. Carbon isotope fractionation between dissolved carbonate (CO32-) and CO2 (g) at 25℃ and 40℃. Earth Planet. Sci. Lett. 95:297-301. https://doi.org/10.1016/0012-821X(89)90104-0
  31. Miller PA, KR Munkittrick and DG Dixon. 1992. Relationship between concentrations of copper and zinc in water, sediment, benthic invertebrates, and tissues of white sucker (Catostomus commersoni) at metal-contaminated sites. Can. J. Fish. Aquat. Sci. 49:978-984. https://doi.org/10.1139/f92-109
  32. Minagawa M and E Wada. 1984. Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48:1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7
  33. Moller H. 1985. A critical review on the role of pollution as a cause of fish disease. pp. 169-182 In: Fish and Shellfish Pathology (Ellis AE, ed.). Academic Press. London, UK.
  34. Munkittrick KR and DG Dixon. 1988. Growth, fecundity, and energy stores of white sucker(Catostomus commersoni) from lakes containing elevated levels of copper and zinc. Can. J. Fish. Aquat. Sci. 45:1355-1365. https://doi.org/10.1139/f88-159
  35. Newsome SD, C Martinez del Rio, S Bearhop and DL Phillips. 2007. A niche for isotopic ecology. Front. Ecol. Environ. 5:429-436. https://doi.org/10.1890/060150.1
  36. NIBR. 2013. Endemic Species of Korea: Vertebrates. National Institute of Biological Resources. Incheon, Korea.
  37. NIBR. 2020. The Inventory of Endemic Species on the Korean Peninsula (2020). National Institute of Biological Resources. Incheon, Korea. https://www.nibr.go.kr/aiibook/ecatalog5.jsp?Dir=1059&catimage=&callmode=admin. Accessed September 9, 2024.
  38. Oh HJ, MY Jin, B Choi, KH Shin, GH La, HW Kim, MH Jang, KL Lee and KH Chang. 2019. Analysis of food web structure of Nakdong River using quantitative food web parameters obtained from carbon and nitrogen stable isotope ratios. Korean J. Ecol. Environ. 52:50-64. https://doi.org/10.11614/KSL.2019.52.1.050
  39. Oksanen J, FG Blanchet, M Friendly, R Kindt, P Legendre, D McGlinn, PR Minchin, RB O'Hara, GL Simpson, P Solymos, MHH Stevens, E Szoecs and H Wangen. 2019. Vegan: Community Ecology Package. R package version 2.5-4. http://cran.r-project.org/package=vegan. Accessed September 9, 2024.
  40. Parnell A, A Jackson and MA Parnell. 2013. Stable Isotope Analysis in R. R package version 4.1.1. http://cran.r-project.org/package=SIAR. Accessed September 9, 2024.
  41. R Core Team. 2016. The R Stats Package. R package version 3.3.1. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package. Accessed September 9, 2024.
  42. Seo DH, HJ Oh, MY Jin, Y Oda, HW Kim, MH Jang, B Choi, KH Shin, KL Lee, SW Lee and KH Chang. 2018. Application of stable isotopic niche space to large river monitoring: Analysis of benthic macroinvertebrates of the Seongchon Wier. J. Environ. Impact Assess. 27:685-694. https://doi.org/10.14249/eia.2018.27.6.685
  43. Seo J. 2005. Fish fauna and ecological characteristics of dark chub (Zacco temminckii ) population in the mid-upper region of Gam Stream. Korean J. Limnol. 38:196-206.
  44. Seo JK, HK Choi and HJ Lee. 2023. Spawning patterns of three bitterling fish species (Pisces: Acheilognathinae) in host mussels and the first report of their spawning in Asian calm (Corbicula fluminae) from Korea. Korean J. Environ. Biol. 41:229-246. https://doi.org/10.11626/KJEB.2023.41.3.229
  45. Vander Zanden MJ and JB Rasmussen. 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395-1404.
  46. Vander Zanden MJ, JM Casselman and JB Rasmussen. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464-467. https://doi.org/10.1038/46762
  47. Won EJ, HE Cho, D Kim, JW Choi, KG An and KH Shin. 2023. Interpretation of trophic positions using the CSIA approach: Focusing on the invasive fish lake skygazer Chanodichthys erythropterus. Korean J. Ecol. Environ. 56:218-228. https://doi.org/10.11614/KSL.2023.56.3.218
  48. Yoon JD, SH Park, KH Chang, JY Choi, GJ Joo, GS Nam, J Yoon and MH Jang. 2015. Characteristics of fish fauna in the lower Geum River and identification of trophic guilds using stable isotopes analysis. Korean J. Environ. Biol. 33:34-44. https://doi.org/10.11626/KJEB.2015.33.1.034