DOI QR코드

DOI QR Code

Technical Trend of Concrete Member with GFRP Bar and Tension Stiffening Effect

GFRP 보강근 배근 콘크리트 기술동향 및 인장강화 효과 분석

  • Won-Jun Lee (Korea Institute of Industrial Technology) ;
  • Seong-Cheol Lee (Kyungpook National University) ;
  • Jung-Woo Cho (Korea Institute of Industrial Technology)
  • 이원준 (한국생산기술연구원) ;
  • 이성철 (경북대학교) ;
  • 조정우 (한국생산기술연구원)
  • Received : 2024.10.07
  • Accepted : 2024.10.18
  • Published : 2024.10.31

Abstract

Steel rebar is commonly used as reinforcement in reinforced concrete (RC) structures. However, steel rebar corrodes over time, leading to a significant reduction in structural safety as the structure ages. Therefore, Glass Fiber Reinforced Plastic (GFRP) rebar, which is not prone to corrosion, has gained attention as a replacement for conventional steel reinforcement. This study investigates the fundamental technology required for applying GFRP rebar to concrete members. Based on this, the bond behavior and tension stiffening effect of GFRP-reinforced members were analyzed. The analysis revealed that key properties of GFRP rebar, such as bond behavior, rebar diameter, and reinforcement ratio, are major factors influencing the tension stiffening effect. To further expand the application of GFRP rebar,it is expected that a new model that accurately reflects the tension stiffening effect will be required.

철근콘크리트 구조물 보강근으로는 일반강 소재가 주로 사용된다. 이 소재는 장기간에 걸쳐 부식이 진행되므로, 구조물이 노후화되면 안전성이 급격히 저하되는 문제가 발생한다. 그래서 부식 우려가 없는 GFRP (Glass Fiber Reinforced Plastic) 보강근이 기존 철근의 대체재로 주목받고 있다. 본 연구는 GFRP 보강근을 콘크리트 부재에 적용하기 위한 기초 기술을 조사하였다. 이를 바탕으로 기존의 GFRP 보강근 부재의 부착거동 및 인장강화 효과에 대해 분석하였다. 그 결과, GFRP 보강근의 부착거동의 반영, 보강근의 지름, 보강근비와 같은 GFRP 보강근의 물성치가 인장강화 효과의 주요 변수로 분석되었다. GFRP 보강근 적용을 확대하기 위해서는 인장강화 효과를 정확히 반영할 수 있는 신규 모델이 필요할 전망이다.

Keywords

Acknowledgement

본 연구는 2024년도 국토교통부(국토교통과학기술진흥원)의 'TBM 굴진향상을 위한 연속굴착 기술개발(RS-2022-00144188)' 사업을 통해 수행되었습니다.

References

  1. Abdalla, H.A., 2002, Evaluation of deflection in concrete members reinforced with fibre reinforced polymer (FRP) bars. Composite Structures, 56(1), 63-71.
  2. Achillides, Z., 1998, Bond behaviour of FRP bars in concrete (Doctoral dissertation, University of Sheffield).
  3. ACI Committee 440, 1996, Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars-Code and Commentary (ACI CODE-440.11-22), American Concrete Institute, Farmington Hills, MI.
  4. Afefy, H.M., and El-Tony, E.T.M., 2016, Bond behavior of embedded reinforcing steel bars for varying levels of transversal pressure, Journal of Performance of Constructed Facilities, 30(2), 04015023.
  5. Aiello, A.M., Leone, M., and Pecce, M., 2007, Bond performances of FRP rebars-reinforced concrete. Journal of Materials in Civil Engineering, 19(3), 205-213.
  6. American Concrete Institute (ACI), 1996, State of art report on fiberreinforced plastic reinforcement for concrete structures, ACI 440R-96,Detroit.
  7. Amran, Y.M., Alyousef, R., Rashid, R.S., Alabduljabbar, H., and Hung, C.C., 2018, Properties and applications of FRP in strengthening RC structures: A review. In Structures, 16, 208-238.
  8. Bakis, C.E., Bank, L.C., Brown, V., Cosenza, E., Davalos, J.F., Lesko, J.J., ... and Triantafillou, T.C., 2002, Fiber-reinforced polymer composites for construction-State-of-the-art review. Journal of Composites for Construction, 6(2), 73-87.
  9. Bank, L.C., 2006, Composites for construction: structural design with FRP materials. New York (NY): John Wiley & Sons.
  10. Bazant, Z.P., and Oh, B.H., 1983, Crack band theory for fracture of concrete. Materiaux et Construction, 16, 155-177.
  11. Belarbi, A., and Hsu, T.T., 1994, Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Structural Journal, 91(4), 465-474.
  12. Benmokrane, B., and Tighiouart, B., and Chaallal., O., 1996a, Bond strength and load distribution of composite GFRP reinforcing bars in concrete, Materials Journal, 93(3), 254-259.
  13. Benmokrane, B., Brown, V.L., Ali, A.H., Mohamed, K., and Shield, C., 2020, Reconsideration of the environmental reduction factor CE for GFRP reinforcing bars in concrete structures. Journal of Composites for Construction, 24(4), 06020001.
  14. Benmokrane, B., Chaallal, O., and Masmoudi, R., 1995, Glass fibre reinforced plastic (GFRP) rebars for concrete structures. Construction and Building Materials, 9(6), 353-364.
  15. Benmokrane, B., Xu, H., and Bellavance, E., 1996b, Bond strength of cement grouted glass fibre reinforced plastic (GFRP) anchor bolts. In International Journal of Rock Mechanics And Mining Sciences & Geomechanics, 33(5), 455-465.
  16. Bentz, E.C., 2005, Explaining the riddle of tension stiffening models for shear panel experiments. Journal of Structural Engineering, 131(9), 1422-1425.
  17. Bischoff, P.H., and Paixao, R., 2004, Tension stiffening and cracking of concrete reinforced with glass fiber reinforced polymer (GFRP) bars. Canadian Journal of Civil Engineering, 31(4), 579-588.
  18. Brown, V.L., and Bartholomew, C.L., 1993, FRP reinforcing bars in reinforced concrete members. Materials Journal, 90(1), 34-39.
  19. Campbell, T.I., and Dolan, C.W., 2008, Specification for carbon and glass fiber-reinforced polymer bar materials for concrete reinforcement, US ACI, 440.
  20. Caratelli, A., Meda, A., Rinaldi, Z., Spagnuolo, S., and Maddaluno, G., 2017, Optimization of GFRP reinforcement in precast segments for metro tunnel lining, Composite Structures, 181, 336-346.
  21. Cho, J.R., 2019, Research and development status and application cases of FRP reinforcement in Korea, KICTzine, 2019(6), 32-35.
  22. Cosenza, E., Manfredi, G., and Realfonzo, R., 1995, 20 Analytical modelling of bond between frp reinforcing bars and concrete, In Non-metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium CRC Press, 29, 164.
  23. Cosenza, E., Manfredi, G., and Realfonzo, R., 1997, Behavior and modeling of bond of FRP rebars to concrete, Journal of Composites for Construction, 1(2), 40-51.
  24. De Luca, A. and Nanni, A., 2012, FRP-Reinforced Concrete Structures, Wiley Encyclopedia of Composites.
  25. Du Beton, F.I., 2012, Model code 2010: final draft. International Federation for Structural Concrete. 
  26. Eligehausen, R., Popov, E.P., and Bertero, V.V., 1983, Local bond stress-slip relationships of deformed bars under generalized excitations, pp. 57-58, NTIS.
  27. Emparanza, A.R., Kampmann, R., and De Caso y Basalo, F., 2017, State-of-the-practice of global manufacturing of FRP rebar and specifications, ACI Fall Conv, 327, 45-1.
  28. Floegl, H., and Mang, H.A., 1982, Tension stiffening concept based on bond slip. Journal of the Structural Division, 108(12), 2681-2701.
  29. Garden, H.N., and Hollaway, L.C., 1998, An experimental study of the influence of plate end anchorage of carbon fibre composite plates used to strengthen reinforced concrete beams. Composite Structures, 42(2), 175-188.
  30. Gilbert, R.I., and Warner, R.F., 1978, Tension stiffening in reinforced concrete slabs. Journal of the Structural Division, 104(12), 1885-1900.
  31. Goto, Y., 1971, Cracks formed in concrete around deformed tension bars. In Journal Proceedings, 68(4), 244-251.
  32. Gremel, D., 2001, FRP Rebar-A State of the Industry Report Manufacturing Construction, Economic and Marketing. In Composites in Construction: A Reality, pp. 49-57.
  33. Habeeb, M.N., and Ashour, A.F., 2008, Flexural behavior of continuous GFRP reinforced concrete beams. Journal of Composites for Construction, 12(2), 115-124.
  34. Hollaway, L.C., 2010, A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties, Construction and Building Materials, 24(12), 2419-2445.
  35. Japan Society of Civil Engineering (JSCE), 1997, Design guidelines of FRP reinforced concrete building structures. Concrete Engineering Series nr 23, Tokyo, Japan.
  36. Jin, Z.S., and Zhu, W.F., 1985, PANG Tong-he. Experimental research on bond behaviour between reinforcement and concrete [J], Journal of Nanjing Institute of Technology, 2, 73-85.
  37. KCMT. KEco Catalog - 2023, 2023, https://www.kcmt.co.kr/.
  38. Khalfallah, S., 2013, Tension stiffening model for nonlinear analysis of GFRP-RC members. The IES Journal Part A: Civil & Structural Engineering, 6(4), 269-277.
  39. Kharal, Z., and Sheikh, S., 2017, Tension Stiffening and Cracking Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete. ACI Structural Journal, 114(2).
  40. Kim, S.H., Roh, H.S., Moon, D.Y., Park, C.W., Lee, S.J., Jang, S.Y., ... and Cheon, S.C., 2024, [Special Feature 3] Direction and major issues of KCI structural design code for GFRP reinforced concrete structure, Magazine of the Korea Concrete Institute, 36(2), 48-57.
  41. Kobayashi, K., and Takewaka, K., 1984, Experimental studies on epoxy coated reinforcing steel for corrosion protection. International Journal of Cement Composites and Lightweight Concrete, 6(2), 99-116.
  42. Korea Concrete Institute, 2019, Design guidelines for FRP reinforced structures. Concrete Practice Guidelines KCI PM112.1-19, Kimoondang.
  43. Korea Concrete Institute, 2022, KDS 14 20 50: 2022 Detailed design standards for concrete structure reinforcement, National Construction Standards Center.
  44. Korea Concrete Institute, 2024, KCI-GFRP101:2024 Glass fiber reinforced polymer for concrete structures : Minimum required performance and quality assurance.
  45. Korea Expressway Corporation, 2024, KCS 24 50 05: 2024 Standard specifications for concrete bridges with GFRP reinforcement, Design standards for concrete bridges with GFRP reinforcement, National Construction Standards Center.
  46. Korea Institute of Civil Engineering and Building Technology, 2013, Structural performance improvement of infrastructures using FRP composites. (KICT 2013-203-1).
  47. Korea National Railway, 2022, KRSA-1018-R0 glass fiber reinforced polymer (GFRP) rebar for concrete trackbeds. Korea National Railway Corporation Standard Specification.
  48. Lee, J.Y., Lim, A.R., Kim, J., and Kim, J., 2017, Bond behaviour of GFRP bars in high-strength concrete: bar diameter effect. Magazine of Concrete Research, 69(11), 541-554.
  49. Lee, S.Y., Lee, T.H., Lee, J.M., and Park, J.G., 2022, Performance verification and their applications of civil structures using GFRP reinforcing bars, Journal of the Society of Advanced Composite Materials, 13(4), 30-40.
  50. Lee, T.H., 2024, Introduction and expansion of GFRP reinforcement. Korean Society for Advanced Composite Structures, 15(1), 83-98.
  51. Lin, X., and Zhang, Y.X., 2014, Evaluation of bond stress-slip models for FRP reinforcing bars in concrete. Composite Structures, 107, 131-141.
  52. Lutz, L.A, 1966, The mechanics of bond and slip of deformed reinforcing bars in concrete. Cornell University.
  53. Lutz, L.A., and Gergely, P, 1967, Mechanics of bond and slip of deformed bars in concrete. In Journal Proceedings, 64(11), 711-721.
  54. Malvar, L.J., 1992, Bond of reinforcement under controlled confinement. Materials Journal, 89(6), 593-601.
  55. Malvar, L.J., 1994, Bond stress-slip characteristics of FRP rebars. Naval Facilities Engineering Service Center.
  56. Meda, A., Moja, M., Pizzarotti, E.M., and Vago, G., 2020, GFRP Reinforcement for Segmental Linings of Mechanized Tunnels. In Proceedings of Italian Concrete Days 2018, Springer International Publishing, pp. 461-473.
  57. Ministry of Land, Infrastructure and Transport, 2019, Final report on the development of partial replacement and low-carbon material utilization technology for extending bridge lifespan based on ICT. (13SCIPA01).
  58. Mirza, S.M., and Houde, J., 1979, Study of bond stress-slip relationships in reinforced concrete. In Journal proceedings, 76(1), 19-46.
  59. Moon, D.Y., Ji, K.S., Lee, S.J., Kim, S.J., and Cheon, S.C., 2024, [Special Feature 1] Development of a KCI specification for minimum required properties and quality confirmation for GFRP rebars in concrete structures, Magazine of the Korea Concrete Institute, 36(2), 32-41.
  60. Moon, H.Y., Kim, S.S., and Kim, H.S., 2001, Investigation on steel corrosion in domestic concrete structure, Journal of the Korea Concrete Institute, 13(5), 49-54.
  61. Mountifield, J., 1969, Forming processes for glass fibre and resin-other methods. Composites, 1(1), 41-49.
  62. Mufti, A., Onofrei, M., Benmokrane, B., Banthia, N., Boulfiza, M., Newhook, J., ... and Brett, P., 2005, Report on the studies of GFRP durability in concrete from field demonstration structures, In Proceedings of the Conference on Composites in Construction, pp. 11-13.
  63. NACE. 2016, International measures of prevention, application, and economics of corrosion technologies (IMPACT) study. Houston, TX: NACE International, 201.
  64. Nanni, A., 1993, Flexural behavior and design of RC members using FRP reinforcement. Journal of Structural Engineering, 119(11), 3344-3359.
  65. Nanni, A., De Luca, A., and Zadeh, H., 2014, Reinforced concrete with FRP bars. Reinforced Concrete with FRP Bars. CRC Press, London, United Kingdom, 10, b16669.
  66. Nayal, R., and Rasheed, H.A., 2006, Tension stiffening model for concrete beams reinforced with steel and FRP bars. Journal of Materials in Civil Engineering, 18(6), 831-841.
  67. Nilson, A.H., 1972, Internal measurement of bond slip. In Journal Proceedings, 69(7), 439-441.
  68. Rossetti, V.A., Galeota, D., and Giammatteo, M.M., 1995, Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete. Materials and Structures, 28, 340-344.
  69. Rubinsky, I.A., and Rubinsky, A., 1954, A preliminary investigation of the use of fibre-glass for prestressed concrete. Magazine of Concrete Research, 6(17), 71-78.
  70. Sooriyaarachchi, H., Pilakoutas, K., and Byars, E., 2005, Tension stiffening behavior of GFRP-reinforced concrete. Special Publication, 230, 975-990.
  71. Tassios, T.P., 1980, Properties of bond between concrets and steel under load cycles idealizing seismic actions.
  72. Tassios, T.P., and Yannopoulos, P.J., 1981, Analytical studies on reinforced concrete members under cyclic loading based on bond stress-slip relationships. In Journal Proceedings, 78(3), 206-216.
  73. Tastani, S.P., and Pantazopoulou, S.J., 2006, Bond of GFRP bars in concrete: Experimental study and analytical interpretation. Journal of Composites for Construction, 10(5), 381-391.
  74. Vecchio, F., 1982, The response of reinforced concrete to in-plane shear and normal stresses. Publication, 82.
  75. Vecchio, F.J., and Collins, M.P., 1986, The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2), 219-231.
  76. Yan, F., Lin, Z., and Yang, M., 2016, Bond mechanism and bond strength of GFRP bars to concrete: A review. Composites Part B: Engineering, 98, 56-69.
  77. Zheng, Y., Fan, C., Ma, J., and Wang, S., 2023, Review of research on Bond-Slip of reinforced concrete structures. Construction and Building Materials, 385, 131437.