DOI QR코드

DOI QR Code

터널 발파패턴 최적화를 위한 BIM 설계자동화

BIM Automatic Design and the Optimization of the Tunnel Blasting Patterns

  • 조은지 (DL이앤씨(주) 토목스마트엔지니어링팀) ;
  • 김우진 (DL이앤씨(주) 토목스마트엔지니어링팀) ;
  • 정재호 (DL이앤씨(주) 토목스마트엔지니어링팀) ;
  • 방상혁 (DL이앤씨(주) 토목스마트엔지니어링팀)
  • Eunji Jo (Smart – Eng. Team, Civil Business Division, DL E&C, Co., Ltd.) ;
  • Woojin Kim (Smart – Eng. Team, Civil Business Division, DL E&C, Co., Ltd.) ;
  • Jaeho Jung (Smart – Eng. Team, Civil Business Division, DL E&C, Co., Ltd.) ;
  • Sanghyuk Bang (Smart – Eng. Team, Civil Business Division, DL E&C, Co., Ltd.)
  • 투고 : 2024.10.10
  • 심사 : 2024.10.24
  • 발행 : 2024.10.31

초록

최근 도심지의 도시개발 패러다임이 지하공간 개발로 변화하면서, 대도시의 교통혼잡구간을 중심으로 지하도로 및 지하철도의 개발이 증가하고 있다. 본 기술보고는 NATM공법을 적용한 지하공간 개발과 관련된 것으로 기존 2D 발파진동영향 분석 및 발파패턴설계의 한계점을 분석하고 이를 극복하기 위해 개발한 BIM기반 터널 발파패턴 선정 자동화에 관하 것이다. 개발된 기술은 기존 2D 발파설계에서 터널 노선 주변의 고려 가능한 보안물건의 한계와 설계에 소요되는 시간의 한계를 극복하기 위해 터널 노선의 위치별 좌표와 GIS정보를 활용한 노선 주변 모든 보안물건의 모델링이 용이하도록 개발하였다. 또한, 2D 발파설계에서는 발파영향 예측을 위해 시추공발파시험 결과를 적용하였으나, 개발된 기술에서는 실제 터널 발파로부터 얻어진 계측결과를 적용한 예측식의 재산정이 가능하여 시공 중에 모든 보안물건에 대한 발파영향 검토를 신속하게 재수행할 수 있으며 경제적인 설계가 가능하다. GTX-A5, 6공구에 대해 개발된 기술을 적용한 결과 기존 2D 발파설계 대비 1/480 수준인 약 5분 이내에 발파설계를 수행할 수 있었으며, 공사비 약 8억원/km, 공기 약 41일/km의 절감효과를 확인할 수 있었다. 따라서, 향후 BIM기반의 설계 및 시공관리 과정에서 최적의 발파패턴 산정을 위한 기술적 근거자료로 활용 가능할 것으로 예상된다.

As the paradigm of urban development has recently changed to development of underground space, the road tunnels and railway tunnels are increasing to relieve traffic congestion. This technical notes is related to the development of underground spaces using NATM (New Austrian Tunneling Method). Limitations of conventional 2D blasting pattern design method were analyzed, and BIM-based automatic design method was developed to overcome them. Since it was developed to facilitate modeling of all safety facilities along a alignment using coordinates and GIS data, it can overcome the limitations of the number of safety facilities that can be considered and time required for conventional design. In the conventional design, the results of borehole test blasting were used to predict the blasting impact. However, the developed technology is possible to recalculate by applying the measurement results obtained from actual tunnel blasting, enabling rapid re-evaluation of the blasting impact on all safety facilities during construction, leading economical design. As a result of applying it to GTX-A5 and 6 sites, it took about 5 minutes, which is 1/480 compared to the conventional design method. In addition, the construction cost was reduced by about 8 billion won/km and the period was reduced by about 41 days/km. It is expected to be used as technical basis for calculating the optimal blasting pattern in the BIM-based design and construction management process.

키워드

참고문헌

  1. Baek, S.K., Choo, S.Y., Yoon, J.O., Baek, U.I., and Park, H.S., 2006, Case Study of Blasting Pattern Design for Tunnelling in Which Considered Blast Induced Vibration Affected Across Buildings, Tunnel & Underground Space, 16(5), 377-386.
  2. Cho, Y.D., 2018, Method stepped blaster tunnel of controlling vibration of blasting tunnel, Korean Intellectual Property Office, Patent No. 1018871460000.
  3. Hwang, H.J., 2001, Measures to reduce vibration and noise in urban tunnel blasting, Magazine of korean Tunnelling and Underground Space Association, 3(4), 38-45.
  4. Jo, E.J., Kim, W.J., Kim, K.Y., Jung, J.H., and Bang, S.H., 2023, Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction, Tunnel & Underground Space, 33(4), 209-227.
  5. KICT, 2024, Development of a BIM and VR-based noise and vibration impact simulator for deep blasting, Korea Institute of Civil Engineering and Building Technology.
  6. Kim, N.S., Lee, J.W., and Cho, K.B., 2013, A Review of Standards for Allowable Limit of Blast Vibration according to the Safety Facilities and Improvement of Problems, Journal of Korean Society of Explosives & Blasting Engineering, 31(2), 50-58.
  7. Lee, C., and Cho, G.H., 2024, Study on Improving Proximity Evaluation Standards when Excavating Tunnels Adjacent to Urban Infrastructure, Tunnel & Underground Space, 34(4), 283-300.
  8. Lee, D.H., and Park, Y.S., 2011, Method for Blasting Core Center-cut, Korean Intellectual Property Office, Patent No. 1011533670000.
  9. Lim, S.S., and Yang, H.S., 2003, A study on Tunnel Design Application of Borehole Blasting Data, Journal of Korean Society of Explosives & Blasting Engineering, 21(2), 15~19.
  10. MOLIT, 2018, Construction technology digitalization and automation : BIM design, big data.AI, virtual construction, etc. establishment of technology development roadmap, Ministry of Land, Infrastructure and Transport.
  11. MOLIT, 2020, Realization of commercialization of smart construction core technology by 2025, Ministry of Land, Infrastructure and Transport.
  12. MOLIT, 2022a, Smart construction activation plan : S-construction 2030, Ministry of Land, Infrastructure and Transport.
  13. MOLIT, 2022b, Construction industry BIM implementation guidelines, Ministry of Land, Infrastructure and Transport.
  14. MOLIT, 2024, Road Policy Brief, Ministry of Land, Infrastructure and Transport, No. 164.
  15. Son, M., Jeong, Y.G., Yu, J.S., Hwang, Y.C., and Mun, D.H., 2013, A study on domestic and international blast vibration allowance standards, Magazine of Korean Tunnelling and Underground Space Association,15(5), 29-42.