• Title/Summary/Keyword: 발파패턴 최적화

Search Result 3, Processing Time 0.017 seconds

Optimization of Tunnel Blasting Design by Finite Element Method (유한요소해석을 이용한 터널 발파설계의 최적화)

  • 이인모;최종원;김상균;김동현;이두화;김영욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.63-74
    • /
    • 2000
  • 지하구조물 걸설시 발파에 의한 암반의 굴착공법이 일반적으로 사용된다. 그러나 발파에 의한 암반의 굴착은 잔존암반의 손상과 진동을 유발하는 문제점을 가지고 있다. 현재까지는 이러한 암반의 손상과 진동문제를 해결하기 위해 현장계측을 기초로한 경험적인 방법이 이용되어 왔으나 여러 가지 한계점을 지니고 있는 것이 현실이다. 따라서 수치해석에 의한 터널 발파의 모델링을 이용하면 이러한 한계점을 보완할수 있을 것이다. 본 논문에서는 발파에 의한 발파공 주위 암반의 거동을 유한요소해석을 이용하여 규명하고, 토로터널의 표준발파패턴을 기초로 하여 외과공 발파와 외곽공에 인접한 주변공 발파에 의한 암방의 손상의 손상을 비교하여 발파패턴의 적절성을 평가하고자 하였으며, 이를 근거응 발파에 의한 암반의 손상을 최소하기 위한 발파패턴의 최적화를 도모하였다.

  • PDF

BIM Automatic Design and the Optimization of the Tunnel Blasting Patterns (터널 발파패턴 최적화를 위한 BIM 설계자동화)

  • Eunji Jo;Woojin Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.461-476
    • /
    • 2024
  • As the paradigm of urban development has recently changed to development of underground space, the road tunnels and railway tunnels are increasing to relieve traffic congestion. This technical notes is related to the development of underground spaces using NATM (New Austrian Tunneling Method). Limitations of conventional 2D blasting pattern design method were analyzed, and BIM-based automatic design method was developed to overcome them. Since it was developed to facilitate modeling of all safety facilities along a alignment using coordinates and GIS data, it can overcome the limitations of the number of safety facilities that can be considered and time required for conventional design. In the conventional design, the results of borehole test blasting were used to predict the blasting impact. However, the developed technology is possible to recalculate by applying the measurement results obtained from actual tunnel blasting, enabling rapid re-evaluation of the blasting impact on all safety facilities during construction, leading economical design. As a result of applying it to GTX-A5 and 6 sites, it took about 5 minutes, which is 1/480 compared to the conventional design method. In addition, the construction cost was reduced by about 8 billion won/km and the period was reduced by about 41 days/km. It is expected to be used as technical basis for calculating the optimal blasting pattern in the BIM-based design and construction management process.

Case study on the Distributed Multi-stage Blasting using Stemming-Help Plastic Sheet and Programmable Sequential Blasting Machine (전색보호판과 다단발파기를 이용한 다단식분산발파의 현장 적용 사례)

  • Kim, Se-Won;Lim, Ick-Hwan;Kim, Jae-Sung
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.14-24
    • /
    • 2013
  • The most effective way of the rock removing works in the downtown area is to removing rocks by splitting the rock by blasting with small amount of explosives in the hole. However environmental factors not only limit the applications but also increase the forbidden area. As this is a distributed multi-stage blasting method and to reduce vibration by applying the optimized precisioncontrol-blasting method, it is applicable in all situations. The process is to fix the stemming-help plastic sheet to the hole entrance when stemming explosives and insert detonator and explosive primer with same delay time, two or three sets. This method is more efficient in the downtown area where claims and dispute from vibration are expected. This method is easily usable by designing blast pattern even in the area where delay time blasting is difficult after multi-stage explosive stemming due to short length of blast hole (1.2~3.0m) and there is no detonator wire shortage or dead-pressure.