DOI QR코드

DOI QR Code

기계화학적 아이오딘 불융화 공정 조건에 따른 마이크로파 탄화규소 발열체의 발열 특성 연구

Investigation of the heating characteristics of microwave silicon carbide heaters under mechanochemical iodine curing process conditions

  • 황창훈 (경남대학교 신소재공학과) ;
  • 백종하 (경남대학교 메카트로닉스공학과) ;
  • 김상인 (경남대학교 메카트로닉스공학과) ;
  • 박상율 (대호아이엔티) ;
  • 김세윤 (경남대학교 신소재공학과)
  • Changhun Hwang (Department of Advanced Materials Science and Engineering, Kyungnam University) ;
  • JongHa Baek (Department of Mechatronics Engineering, Kyungnam University) ;
  • Sang-In Kim (Department of Mechatronics Engineering, Kyungnam University) ;
  • Sangyul Park (DAEHO I&T) ;
  • Se-Yun Kim (Department of Advanced Materials Science and Engineering, Kyungnam University)
  • 투고 : 2024.09.11
  • 심사 : 2024.10.11
  • 발행 : 2024.10.31

초록

탄화규소(SiC)는 기계적/화학적 특성이 우수한 소재로 항공우주, 방산, 원자력 발전과 같은 핵심 산업에서 널리 응용되고 있는 소재이다. 이러한 탄화규소는 마이크로파를 조사하면 급속발열 하는 특성이 알려져 고효율 발열체로 연구되고 있다. 본 연구에서는 폴리카보실란(Polycarbosilane)을 기계 화학적 반응법으로 아이오딘 불융화(curing)처리 하였고, 이를 열분해(Pyrolysis)하여 마이크로파 발열 소재를 제조하였다. 열분해 온도 및 아이오딘 첨가량이 마이크로파 발열에 미치는 영향을 조사하였다. 그 결과 제조된 시편은 약 60초내에 최대 800℃까지 급속 발열하는 것으로 나타났으며, 평균 700~750℃의 온도 구간에서 120분의 장시간 동안 일정하게 온도를 유지하였다.

Silicon carbide (SiC), known for its excellent mechanical and chemical properties, is widely used in key industries such as aerospace, defense, and nuclear power generation. Due to its rapid heating characteristics when exposed to microwaves, SiC is being researched as a highly efficient heating element. In this study, Polycarbosilane (PCS) was treated by a mechanochemical reaction with iodine, followed by pyrolysis to create a microwave heating material. The effects of pyrolysis temperature and iodine additive content on microwave heating performance were investigated. The results showed that the fabricated specimen rapidly heated to a maximum of 800℃ within approximately 60 sec and maintained a stable temperature of 700~750℃ for up to 120 min.

키워드

과제정보

본 연구는 산업통산자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 에너지 인력 양성사업(20214000000480) 및 중소벤처기업부의 재원으로 중소기업기술정보진흥원의 지원을 받아 수행된 중소기업기술혁신개발(R&D)사업(RS-2024-00421303)의 지원을 받아 수행된 연구입니다.

참고문헌

  1. J.H. Eom, Y.W. Kim and S. Raju, "Processing and properties of macroporous silicon carbide ceramics: A review", J. Asian. Ceram. Soc. 1 (2013) 220.
  2. Y. Wang, S. Dong, X. Li, C. Hong and X. Zhang, "Synthesis, properties, and multifarious applications of SiC nanoparticles: A review", Ceram. Int. 48 (2022) 8882.
  3. R. He, N. Zhou, K. Zhang, X. Zhang, L. Zhang, W. Wang and D. Fang, "Progress and challenges towards additive manufacturing of SiC ceramic", J. Adv. Ceram. 10 (2012) 637.
  4. A.N. Qinglong, C.H.E.N. Jie, M.I.N.G. Weiwei and C.H.E.N. Ming, "Machining of SiC ceramic matrix composites: A review", Chinese J. Aeronaut. 34 (2021) 540.
  5. W. Krenkel, "Carbon fibre reinforced silicon carbide composites (C/SiC, C/C-SiC)" In Handbook of ceramic composites (Springer, Boston, 2005) 117.
  6. N. Eswara Prasad and R.J.H. Wanhill, "Aerospace materials and material technologies: Vol. 1: Aerospace materials", (Springer, Boston, 2017) 371.
  7. C. Sauder, "Ceramic matrix composites: Nuclear applications", Ceramic matrix composites: materials, modeling and technology, (Wiley, New York, 2014) 609.
  8. H. Li, L. Zhang, L. Cheng, Y. Wang, Z. Yu, M. Huang, H. Tu and H. Xia, "Effect of the polycarbosilane structure on its final ceramic yield", J. Eur. Ceram. Soc. 28 (2008) 887.
  9. T. Taki, K. Ohamura and M. Sato, "A study of the oxidation curing mechanism of polycarbosilane fibre by solid-state high-resolution nuclear magnetic resonance", J. Mater. Sci. 24 (1989) 1263.
  10. M. Narisawa, M. Shimoda, K. Okamura, M. Sugimoto and T. Seguchi, "Reaction mechanism of the pyrolysis of polycarbosilane and polycarbosilazane as ceramic precursors", Bull. Chem. Soc. Jpn. 68 (1995) 1098.
  11. Y.J. Yoo, S.H. Joo and K.Y. Cho, "Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block", J. Korean Cryst. Growth Cryst. Technol. 30 (2020) 271.
  12. J.S. Hong, K.Y. Cho, D.G. Shin, J.I. Kim and D.H. Riu, "Iodine diffusion during iodine-vapor curing and its effects on the morphology of polycarbosilane/silicon carbide fibers", J. Appl. Polym. Sci. 132 (2015) 42687.
  13. H.Q. Ly, R. Taylor, R.J. Day and F. Heatley, "Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products", J. Mater. Sci. 36 (2001) 4037.
  14. A. Idesaki, M. Narisawa, K. Okamura, M. Sugimoto, Y. Morita, T. Seguchi and M. Itoh, "Application of electron beam curing for silicon carbide fiber synthesis from blend polymer of polycarbosilane and polyvinylsilane", Radiat. Phys. Chem. 60 (2001) 483.
  15. K. Okamura and T. Seguchi, "Application of radiation curing in the preparation of polycarbosilane-derived SiC fibers", J. Inorg. Organomet. Polym. 2 (1992) 171.
  16. Y. Hasegawa, "New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fibre", Compos. Sci. Technol. 51 (1994) 161.
  17. J.S. Hong, K.Y. Cho, D.G. Shin, J.I. Kim. S.T. Oh and D.H. Riu, "Low-temperature chemical vapour curing using iodine for fabrication of continuous silicon carbide fibres from low-molecular-weight polycarbosilane", J. Mater. Chem. A. 2 (2014) 2781.
  18. V. Verdingovas, L. Muller, M.S. Jellesen, F.B. Grumsen and R. Ambat, "Effect of iodine on the corrosion of AuAl wire bonds", Corros Sci. 97 (2015) 161.
  19. N.R. Rose, R. Bonita and C.L. Burek, "Iodine: an environmental trigger of thyroiditis", Autoimmin. Rev. 1 (2002) 97.
  20. E. Boldyreva, "Mechanochemistry of inorganic and organic systems: what is similar, what is different?", Chem. Soc. Rev. 42 (2013) 7719.
  21. Y.J. Yoo and K.Y. Cho, "Microwave-assisted heating behavior of amorphous SiC fibers derived from polycarbosilane", Mater. Res. Express. 8 (2021) 035603.
  22. C. Ke, T. Liu, Y. Zhang and Q. Xiong, "Energy absorption performances of silicon carbide particles during microwave heating process", Chem. Eng. Process. 172 (2022) 108796.
  23. Z. Shen, J. Chen, B. Li, G. Li, Z. Zhang and X. Hou, "Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials", J. Alloy. Compd. 815 (2020) 15238.
  24. H. Sugawara, K. Kashimura, M. Hayashi, S. Ishihara, T. Mitani and N. Shinohara, "Behavior of microwave-heated silicon carbide particles at frequencies of 2.0~13.5 GHz", Appl. Phys. Lett. 105 (2014) 034103.
  25. Y.J. Joo, K.Y. Cho and C.J. Kim, "Effect of pyrolysis temperature on heat-generating behavior and morphology of SiC fiber mats", J. Ceram. Process. Res. 20 (2019) 563.
  26. Y. Hasegawa and K. Okamura, "Synthesis of continuous silicon carbide fiber: Part3 Pyrolysis process of polycarbosilane and structure of the products", J. Mater. Sci. 18 (1983) 3633.