DOI QR코드

DOI QR Code

Plant Early Growth and Chlorophyll Fluorescence of Seven Varieties of Italian Ryegrass Under Various Salt Stress Conditions

다양한 염 스트레스 조건에서 이탈리안 라이그라스 7 품종의 초기 생장 및 엽록소 형광 반응

  • Ji-Hyeon Mun (Department of Crop Science and Biotechnology, Chonbuk National University) ;
  • In-Ha Lee (Department of Crop Science and Biotechnology, Chonbuk National University) ;
  • Ji-Young Shon (National Institute of Crop Sceince, RDA) ;
  • Nam-Jin Chung (Department of Crop Science and Biotechnology, Chonbuk National University)
  • 문지현 (전북대학교 농업생명과학대학 작물생명과학과) ;
  • 이인하 (전북대학교 농업생명과학대학 작물생명과학과) ;
  • 손지영 (농촌진흥청 국립식량과학원) ;
  • 정남진 (전북대학교 농업생명과학대학 작물생명과학과)
  • Received : 2024.08.04
  • Accepted : 2024.08.24
  • Published : 2024.09.01

Abstract

This study evaluated the salt tolerance of Italian ryegrass varieties under various salt stress conditions. Seven varieties, including Kowineary, Greencall, Greenfarm, Greenfarm 3, IR 603, IR 605, and IR 901, were used in this experiment. Under various salt concentrations, there was no significant decrease compared to the control at salt concentrations of 0.1% to 0.3%. IR 901, Kowineary, and IR 605 had a lower relative reduction rate, but the absolute growth of IR 603 was the highest among the varieties. Among chlorophyll fluorescence parameters, ABS/RC, TRo/RC, ETo/RC, and DIo/RC values (activities expressed per reaction center) showed a significantly negative correlation with growth rates. In the experiment where the salt concentration was drastically increased, the growth decreases in Greenfarm 3 and IR 901 were relatively small compared to other varieties. Among the relative ratio of chlorophyll fluorescence parameters, ABS/RC, TRo/RC, ETo/RC (after 1 hour of salt concentration increase), and PIABS (3 hours, 7 days) showed a significant positive correlation, and DIo/RC (3 hours, 1 day) showed a negative correlation with plant growth. In the experiment where the salt concentration was drastically decreased, the growth increases in Greenfarm, IR 901, and Kowineary were relatively high compared to other varieties. Among the relative ratio of chlorophyll fluorescence parameters, ABS/RC, ETo/RC, DIo/RC (5 hours), and PIABS (1 hour) showed a significant positive correlation with plant growth. In summary, among the seven varieties, Kowineary and IR 901 had superior relative growth (compared to the control) under various salt stress conditions. IR 603 showed a greater decrease in relative growth but had the highest absolute growth amount under salt stress conditions. In addition, some parameters related to chlorophyll fluorescence showed a significant correlation with early growth, which could be used as indicators of the initial growth of IRG under salt stress.

본 연구는 염 스트레스 조건에서 이탈리안 라이그라스(IRG)의 엽록소 형광 반응을 검토하여 품종 간의 내염성을 평가하였다. 시험에 사용한 IRG 품종은 코윈어리, 그린콜, 그린팜, 그린팜 3호, IR 603, IR 605, IR 901등 7품종이다. 염농도에 따른 초기 생장은 온실에서 수경재배로 조사하였고, 염농도 변화 처리 시의 생육 및 엽록소 형광 시험은 생장상에서 수경재배로 조사하였다. 1. 염농도에 따른 품종별 초기 생장을 보면, 0.1%~0.3% 염농도 범위에서 코원어리, 그린콜, 그린팜, IR 605는 대조구와 유의한 차이가 없었으나, 그린팜 3호, IR 603, IR 901은 염농도 0.1%에서 오히려 대조구보다 생장량이 유의하게 증가하였다. 0.6% 이상의 염농도에서는 모든 품종의 생장량이 감소하였는데, 코윈어리, IR 605, IR 901 품종은 대조구에 비해 상대적인 감소 비율이 적었으며, IR 603의 감소 비율은 비교적 컸으나 절대적인 수량이 가장 많았다. 염농도에 따른 7품종의 엽록소 형광 측정 결과, 대부분의 품종이 0.1~0.3% 염농도의 OJIP 곡선에서 대조구와 유사하지만 염농도 0.6% 이상에서는 엽록소 형광량이 감소하였다. 엽록소 형광 파라미터 상대 비율 중 ABS/RC, TRo/RC, ETo/RC, DIo/RC 값은 식물체의 생장량과 유의하게 음의 상관관계를 보였다. 2. 염농도의 급격한 변화가 IRG에 미치는 영향을 검토한 결과, 염농도를 급격히 상승시킨 처리에서는 생장량, SPAD, 상대 수분 함량이 감소하고 전해질 용출량이 증가하였는데, 품종별로는 그린팜 3호와 IR 901품종의 변화가 비교적 적었다. 엽록소 형광 파라미터 상대 비율 중 염농도 상승 1시간 후의 ABS/RC, TRo/RC, ETo/RC, 염농도 상승 3시간 후와 7일 후의 PIABS는 식물체의 생장량과 유의한 양의 상관을 보였으며, 염농도 상승 3시간 후와 1일 후의 DIo/RC는 음의 상관을 보였다. 3. 염농도를 급격히 하강시킨 처리에서는 식물체의 생장량, SPAD, 상대 수분 함량이 증가하였고, 전해질 용출량이 감소하였는데, 품종별로는 그린팜, IR 901, 코윈어리 품종의 변화가 비교적 많았다. 엽록소 형광 파라미터 상대비율 중 염농도 하강 1시간 후의 PIABS, 5시간 후의 ABS/RC, ETo/RC, DIo/RC는 식물체의 생장량과 유의한 양의 상관을 보였다. 4. 이상의 결과를 종합해 보면, 염 스트레스와 염농도 변화 환경에서 IRG 7품종 중 코윈어리와 IR901 품종은 상대적 생장량이 우수하였다. 또한, IR603 품종은 염 스트레스 환경에서 생장량의 감소는 많지만, 다른 품종보다 절대적인 생장량이 많았다. 엽록소 형광 매개변수는 품종과 스트레스 환경에 따라 다르게 나타났으며, 이는 염 스트레스로 인한 반응중심의 활성 변화 때문일 것으로 보인다. 특히 염 스트레스를 판단하기 위한 생장 지표로, 반응중심 당 에너지의 흐름과 에너지 보존 효율을 의미하는 엽록소 형광 매개변수들이 효과적으로 이용될 것으로 판단된다.

Keywords

References

  1. Bano, H., H. U. R. Athar, Z. U. Zafar, H. M. Kalaji, and M. Ashraf. 2021. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiol. Plant. 172(2) : 1244-1254. 
  2. Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science 21(1) : 43-47. 
  3. Boureima, S., A. Oukarroum, M. Diouf, N. Cisse, and P. Van Damme. 2012. Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ. Exp. Bot. 81 : 37-43. 
  4. Chiango, H., A. Figueiredo, L. Sousa, T. Sinclair, and J. M. da Silva. 2021. Assessing drought tolerance of traditional maize genotypes of mozambique using chlorophyll fluorescence parameters. S. Afr. J. Bot. 138 : 311-317. 
  5. Food and Agriculture Organization (FAO). 2021. World map of salt-affected soils launched at virtual conference. Food and Agriculture Organization of the united nations. 
  6. Farooq, S. and F. Azam. 2006. The use of cell membrane stability (cms) technique to screen for salt tolerant wheat varieties. J. Plant Physiol. 163(6) : 629-637. 
  7. Feng, Q., S. Song, Y. Yang, M. Amee, L. Chen, and Y. Xie. 2021. Comparative physiological and metabolic analyzes of two italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance. Physiol. Plant. 172(3) : 1688-1699. 
  8. Galic, V., M. Mazur, D. Simic, Z. Zdunic, and M. Franic. 2020. Plant biomass in salt-stressed young maize plants can be modelled with photosynthetic performance. Photosynthetica 58. 
  9. Garland, J. L. 1992. Coupling plant growth and waste recycling systems in a controlled life support system (celss). 
  10. Gomes, M. T. G., A. C. da Luz, M. R. dos Santos, M. D. C. P. Batitucci, D. M. Silva, and A. R. Falqueto. 2012. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci. Hortic. 142 : 49-56. 
  11. Guha, A., D. Sengupta, and A. R. Reddy. 2013. Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. Journal of Photochemistry and Photobiology B: Biology 119 : 71-83. 
  12. Gul, H. S., M. Ulfat, Z. U. Zafar, W. Haider, Z. Ali, H. Manzoor, S. Afzal, M. Ashraf, and H.-u.-R. Athar. 2023. Photosynthesis and salt exclusion are key physiological processes contributing to salt tolerance of canola (Brassica napus L.): Evidence from physiology and transcriptome analysis. Genes. 14(1) : 3. 
  13. Gupta, R. 2019. Tissue specific disruption of photosynthetic electron transport rate in pigeonpea (Cajanus cajan L.) under elevated temperature. Plant Signaling & Behavior 14(6). 
  14. Heidari, A., A. Bandehagh, and M. Toorchi. 2014. Effects of NaCl stress on chlorophyll content and chlorophyll fluorescence in sunflower (Helianthus annuus L.) lines. Yuzuncu Yil University J. Agric. Sci. 24(2), 111-120. 
  15. Hoagland, D. R. and D. I. Arnon. 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station 347(2nd edit). 
  16. Hwang, B. S., G. W. Jung, W. H. Kim, Y. C. Lim, and J. D. Kim. 2010. The effect of feeding mixed-sowing winter forage crop and whole crop barley silage on feed intake, nutrient digestibility and blood characteristics in the Korean black goats. J. Korean Soc. Grassl. Forage Sci. 30(1) : 49-58. 
  17. Janeeshma, E., R. Johnson, M. Amritha, L. Noble, K. R. Aswathi, A. Telesinski, H. M. Kalaji, A. Auriga, and J. T. Puthur. 2022. Modulations in chlorophyll a fluorescence based on intensity and spectral variations of light. Int. J. Mol. Sci. 23(10) : 5599. 
  18. Kalaji, H. M., A. Jajoo, A. Oukarroum, M. Brestic, M. Zivcak, I. Samborska, I. A. Samborska, M. D. Cetner, I. Lukasik, V. Goltsev, and R. J. Ladle. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38 : 1-11. 
  19. Kalaji, M. H., V. N. Goltsev, K. Zuk-Golaszewska, M. Zivcak, and M. Brestic. 2017. Chlorophyll fluorescence: Understanding crop performance basics and applications. CRC Press. 
  20. Kang, C. H., I. S. Lee, and S. J. Kwon. 2020. Identification of ideal seed harvest time for Italian Ryegrass (IRG) 'Kowinearly' variety in reclaimed land. Korean J. Crop Sci. 65(2) : 142-150. 
  21. Kim, M., J. Kim, G. Ki, G. Choi, S. Seo, and S. Yoon. 2007. Feeding effect of tmr using italian ryegrass silage on milk yield and composition in dairy cattle. In: Proceedings of the Korean Society of Grassland and Forage Science conference. pp. 254-255. 
  22. Kim, W. H., S. N. Kang, M. V. Arasu, G. M. Chu, D. H. Kim, J. H. Park, Y. K. Oh, and K. C. Choi. 2015. Profile of hanwoo steer carcass characteristics, meat quality and fatty acid composition after feeding italian ryegrass silage. Korean Journal for Food Science of Animal Resources 35(3) : 299. 
  23. Lee, K. C., H. Kweon, J. W. Sung, Y. S. Kim, Y. G. Song, S. Cha, and N. Koo. 2022. Physiological response analysis for the diagnosis of drought and waterlogging damage in prunus yedoensis. For. Sci. Technol. 18(1) : 14-25. 
  24. Lee, S. H., G. J. Choi, D. G. Lee, J. Y. Mun, K. Y. Kim, H. J. Ji, H. S. Park, and K. W. Lee, 2014. Effects of sodium chloride treatment on seed germination and seedling growth of italian ryegrass cultivars. J. Kor. Grassl. Forage Sci. 34(2) : 108-113. 
  25. Lee, S. M. 2013. Effects of seeding dates on yield and feed value of italian ryegrass in paddy field cultivation. J. Korean Soc. Grassl Forage Sci. 33 : 185-192. 
  26. Lee, S. M. and E. J. Kim. 2017. Growth characteristics and nutritional composition of italian ryegrass (Lolium multiflorum Lam.) cultivars grown in a paddy field. J. Korean Soc. Grassl. Forage Sci. 37(2) : 183-188. 
  27. Lee, S., H. Woo, and B. Lee. 2004. Factors affecting genetic transformation of italian ryegrass. J. Anim. Sci. Technol. 46(2) : 235-242. 
  28. Luo, B., C. Wang, X. Wang, H. Zhang, Y. Zhou, W. Wang, and P. Song. 2021. Changes in photosynthesis and chlorophyll fluorescence in two soybean (Glycine max) varieties under NaCl stress. Int. J. Agric. Biol. Eng. 14(3) : 76-82. 
  29. Mathur, S., S. I. Allakhverdiev, and A. Jajoo. 2011. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem ii in wheat leaves (Triticum aestivum). Biochimica et Biophysica Acta (BBA)-Bioenergetics 1807(1) : 22-29. 
  30. Mehta, P., S. I. Allakhverdiev, and A. Jajoo. 2010. Characterization of photosystem ii heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth. Res. 105 : 249-255. 
  31. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2021.
  32. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 : 651-681. 
  33. Oukarroum, A., A. Lebrihi, M. El Gharous, V. Goltsev, and R.J. Strasser. 2018. Desiccation-induced changes of photosynthetic transport in Parmelina tiliacea (Hoffm.) ach. Analysed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection. J. Lumin. 198 : 302-308. 
  34. Pak, V. A., M. Nabipour, and M. Meskarbashee. 2009. Effect of salt stress on chlorophyll content, fluorescence, na and K ions content in rape plants (Brassica napus L). Asian J Agric Res. 3 : 28-37. 
  35. Rastogi, A., M. Kovar, X. He, M. Zivcak, S. Kataria, H. Kalaji, M. Skalicky, U. Ibrahimova, S. Hussain, and S. Mbarki. 2020. Jip-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica. 58. 
  36. Ryu, J. H., Y. Y. Oh, S. H. Lee, K. D. Lee, and Y. J. Kim. 2020. Annual changes of soil salinity of the saemangeum reclaimed tide land during last 10 years. Korean Journal of Environmental Agriculture. 39(4) : 327-333. 
  37. Shah, S. H., R. Houborg, and M. F. McCabe. 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). agronomy. 7(3) : 61. 
  38. Shim, S. I., S. G. Lee, and B. H. Kang. 1998. Screening of saline tolerant plants and development of biological monitoring technique for saline stress. II. Responses of emergence and early growth of several crop species to saline stress. Korean Journal of Environmental Agriculture. 17(2) : 122-126. 
  39. Sinclair, T. and M. Ludlow. 1985. Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Functional Plant Biology. 12(3) : 213-217. 
  40. Singh, H., D. Kumar, and V. Soni. 2022. Performance of chlorophyll a fluorescence parameters in lemna minor under heavy metal stress induced by various concentration of copper. Scientific Reports. 12(1) : 10620. 
  41. Singh, M., V. P. Singh, G. Dubey, and S. M. Prasad. 2015. Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings. Ecotoxicology and environmental safety. 117 : 164-173. 
  42. Son, J. K., J. D. Song, S. H. Lee, J. H. Ryu, and J. Y. Ch. 2015. Water management for preventing resalinization after early desalinization of saemangeum reclaimed tidal lands. journal of agriculture & life sciences. 46(2) : 74-80. 
  43. Soon, S. J., K. W. Ho, Y. S. Hyung, and N. J. Woo. 2005. Comparison of dry matter and feed value of major winter forage crops in the reclaimed tidal land. J. Korean Soc. Grassl. Forage Sci. 25(2) : 113-118. 
  44. Stirbet, A. 2011. On the relation between the kautsky effect (chlorophyll a fluorescence induction) and photosystem ii: Basics and applications of the ojip fluorescence transient. Journal of Photochemistry and Photobiology B: Biology. 104(1-2) : 236-257. 
  45. Strasser, R. J., A. Srivastava, and M. Tsimilli-Michael. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis: mechanisms, regulation and adaptation 25 : 445-483. 
  46. Strauss, A., G. Kruger, R. Strasser, and P. Van Heerden. 2006. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient ojip. Environ. Exp. Bot. 2(56) : 147-157. 
  47. Sudhakar, C., A. Lakshmi, and S. Giridarakumar. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under nacl salinity. Plant science 161(3) : 613-619. 
  48. Suriya-arunroj, D., N. Supapoj, T. Toojinda, and A. Vanavichit. 2004. Relative leaf water content as an efficient method for evaluating rice cultivars for tolerance to salt stress. Science Asia 30 : 411-415. 
  49. Yang, C. H., J. H. Lee, S. Kim, J. H. Jeong, N. H. Baek, W. Y. Choi, S. B. Lee, Y. D. Kim, S. J. Kim, and G. B. Lee. 2012. Study on forage cropping system adapted to soil characteristics in reclaimed tidal land. Korean J. Soil Sci. Fert. 45(3) : 385-392. 
  50. Yoo, C. H., C. H. Yang, T. K. Kim, J. H. Ryu, J. H. Jung, S. W. Kang, J. D. Kim, and K. Y. Jung. 2007. Physico-chemical properties of paddy soil and actual farming conditions in gyehwa reclaimed tidal land. Korean J. Soil Sci. Fert. 40(2) : 109-113. 
  51. Yoo, S. Y., Y. H. Lee, S. H. Park, K. m. Choi, J. Y. Park, A. R. Kim, S. M. Hwang, M. J. Lee, T. S. Ko, and T. W. Kim. 2013. Photochemical response analysis on drought stress for red pepper (Capsium annum L.). Korean J. Soil Sci. Fert. 46(6) : 659-664. 
  52. Yusuf, M. A., D. Kumar, R. Rajwanshi, R. J. Strasser, M. Tsimilli-Michael, and N. B. Sarin. 2010. Overexpression of γ-tocopherol methyl transferase gene in transgenic brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797(8) : 1428-1438. 
  53. Zhang, J., L. Wan, C. Igathinathane, Z. Zhang, Y. Guo, D. Sun, and H. Cen. 2021. Spatiotemporal heterogeneity of chlorophyll content and fluorescence response within rice (Oryza sativa l.) canopies under different nitrogen treatments. Front. Plant Sci. 12 : 645977.