DOI QR코드

DOI QR Code

Effects of Biodegradable Mulching Films on Maize Growth, Yield, and Soil Environment Auto-comp

생분해성 멀칭필름 종류별 옥수수 생육과 수량 및 토양환경에 미치는 영향

  • Hyun-Hwa Park (Department of Oriental Medicine Resources, Sunchon National University) ;
  • Ye-Guon Kim (Department of Oriental Medicine Resources, Sunchon National University) ;
  • Yeon-Hu Woo (Department of Oriental Medicine Resources, Sunchon National University) ;
  • Do-Jin Lee (Department of Agricultural Education, Sunchon National University) ;
  • Yong-In Kuk (Department of Oriental Medicine Resources, Sunchon National University)
  • 박현화 (국립순천대학교 ) ;
  • 김예건 (국립순천대학교 ) ;
  • 우연후 (국립순천대학교 ) ;
  • 이도진 (국립순천대학교 농업교육과) ;
  • 국용인 (국립순천대학교 바이오한약자원학과)
  • Received : 2024.07.12
  • Accepted : 2024.08.04
  • Published : 2024.09.01

Abstract

This study aimed to evaluate the safety and efficacy of various biodegradable mulching films in maize cultivation by analyzing crop growth, yield, film degradation rate, as well as soil chemistry, temperature, and moisture. The results indicated that maize plant height, heading, and silking rates were lower in plots without mulching than in those with biodegradable mulching (F, H, and V) and polyethylene (PE) films. Plant height, heading, and silking rates were consistent throughout the study period between PE and biodegradable mulching films. At harvest, there were no significant differences in the number of leaves per plant, shoot fresh weight, stem length, ear length, ear width, maize count, and yield per 10a between the PE and biodegradable mulching films. However, the light transmittance was higher with biodegradable than with PE films during cultivation and post-harvest. At 63 days post-transplanting, the H film showed the highest transmittance of up to 45% compared to the F and V films. Additionally, the films were completely degraded by 14 days post-harvest. The deterioration level (0-5) of biodegradable mulching films increased over time after transplanting, while the deterioration of the PE film was minimal. At 70 days post-transplanting, the deterioration level of biodegradable films ranged from 2.7 to 4.3, and from 3 to 5 post-harvest, with the H film exhibiting the highest degradation. Up to 49 days post-transplanting, the degradation rate of the biodegradable mulching films was comparable to that of the PE film. However, at 63 days post-transplanting, the degradation rate of the biodegradable film was significantly higher than that of the PE film. The H film, with a degradation rate of 56%, showed the highest rate, followed by the V film at 11%, and the F film at 8%. Although soil pH, electrical conductivity (EC), and organic matter content fluctuated throughout the observation period, there were no significant differences between soils covered with biodegradable mulching films and those covered with PE film. The soil temperature and moisture levels were also similar between the two film types. However, the use of mulch films increased soil temperature by approximately 2 ℃ and soil moisture by 5-15% compared to non-mulched soil. Thus, the biodegradable mulch films used in this study can be safely used without adversely affecting maize growth, yield, or the soil environment.

본 연구의 목적은 다양한 생분해성 멀칭 필름을 사용한 옥수수 재배지에서 작물 생육, 수량, 필름 분해율, 토양 화학성, 토양 온도 및 토양 습도 등을 조사하여 이들 필름이 안전하게 사용할 수 있는지를 평가하는 데 있다. 옥수수의 초장, 출수율 및 추사율은 무멀칭의 경우 생분해성 멀칭 필름(F, H, V)과 폴리에틸렌 필름(PE)에 비해 낮았다. 그러나 옥수수의 초장, 출수율 및 출사율은 조사 시기에 상관없이 PE 필름과 생분해성 멀칭 필름 간에 유의적인 차이가 없었다. 옥수수 수확기에 주당엽수, 주당 생체중, 줄기길이, 이삭길이, 이삭너비와 10a당 옥수수 수와 수량도 PE 필름과 생분해성 멀칭 필름 간에 유의적인 차이가 없었다. 생분해성 필름의 광투과율은 옥수수 재배기간 동안과 옥수수 수확 후에도 상관없이 PE필름에 비해 높았다. 특히, 생분해성 H필름의 광 투광율은 F와 V필름에 비해 높았으며, 이식 후 63일까지 45%을 보였다. 수확 후 14일부터는 필름이 완전 붕괴되었다. 또한, 생분해성 멀칭필름의 붕괴정도(0-5)는 이식 후 시간이 경과할수록 증가했으나, PE 필름의 경우는 거의 붕괴되지 않았다. 생분해성 필름 붕괴정도는 이식 후 70일에 2.7에서 4.3 정도였고, 수확 후에는 3에서 5 정도로 붕괴되었다. 특히 생분해성 필름 중에서 H 필름이 높은 붕괴를 보였다. 생분해성 멀칭필름은 이식 후 49일까지는 PE 필름과 유의적인 차이가 없었으나, 이식 후 63일에 생분해성 필름의 분해율은 H필름(56%) > V필름(11%) = F필름(8%) 순으로 나타나 PE필름에 비해 유의적으로 높았다. 토양 pH와 EC는 조사 시기에 따라 차이를 보였지만, 전반적으로 생분해성 멀칭필름과 PE필름 간에 유의적인 차이가 없었다. 또한, 토양 유기물 함량은 생분해 필름 종류에 상관없이 PE필름과 유의적인 차이를 보이지 않았다. 토양온도와 수분은 생분해성 멀칭필름과 PE필름 간에 차이가 없으나, 토양온도는 무멀칭에 비해 2℃ 정도 상승하였고, 토양수분은 5~15% 정도 증가하였다. 따라서 본 연구에 사용된 생분해성 멀칭필름은 옥수수의 생육, 수량 및 토양환경에 부정적인 영향 없이 안전하게 사용할 수 있을 것으로 판단되었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(IRIS 과제번호: RS-2022-RD010403)의 지원으로 수행된 결과입니다. 연구과제의 실험 진행을 도와 주신 김희권, 정병준, 황인택, 김영옥, 남지영, 이옥기 연구원 분들께 감사드립니다.

References

  1. Afrin, S., M. K. Uddin, and M. M. Rahman. 2020. Microplastics contamination in the soil from Urban Landfill site, Dhaka, Bangladesh. Heliyon 6 (11): 05572.
  2. Albertsson, A. C., C. Barenstedt, and S. Karlsson. 1992. Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation. Polymer Deg. And Stabil. 37 : 163-168.
  3. Bloembergen, S., J. David, D. Geyer, A. Gustafson, J. Snook, and R. Narayan. 1993. Biodegradation and composing studies of polymeric materials. Biodegradation Plastic and Polymers. Doi, Y and Fukuda, K. (eds). Osaka Japan. 601-609.
  4. Brault, D., K. A. Stewart, and S. Jenni. 2002. Optical properties of paper and polyethylene mulches used for weed control in lettuce. Hort. Science 37(1) : 87-91.
  5. Costa, R., A. Saraiva, L. Carvalho, and E. Duarte. 2017. The use of biodegradable mulch films on strawberry crop in Portugal. Sci. Hortic. 173 : 65-70.
  6. Doane, W. M. 1992. USDA research on starch-based biodegradable plastics. Starch 44 : 292-295.
  7. Elmore, C. L. 1990. Soil solarization. Proceedings of the First International Conference on Soil Solarization. FAO, Rome, Italy.
  8. Emadian, S. M., T. T. Onay, and B. Demirel. 2017. Biodegradation of bioplastics in natural environments. Waste Manag. 59 : 526-536.
  9. European Parliament. 2018. Plastic oceans: MEPs back EU ban on polluting throwaway plastics by 2021[Press Release], European Parliament, News Press room.
  10. Filipovic, V., D. Romic, M. Romic, J. Borosic,, L. Filipovic, F.J. K. Mallmann, and D. A. Robinson. 2016. Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: experimental results and a modeling study. Agric. Water Manag. 176 : 100-110.
  11. Gao, X., D. Xie, and C. Yang. 2021. Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment. Agric. Water Manag. 255 : 1-9.
  12. Geyer, R., J. R. Jambeck, and K. L. Law. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3 : 700782.
  13. Hernandez-Garcia, E., M. Vargas, A. Chiralt, and C. Gonzalez-Martinez. 2022. Biodegradation of PLA-PHBV blend films as affected by the incorporation of different phenolic acids. Foods 11 : 243.
  14. Jung, B. W., C. H. Shin, Y J. Kim, S. H. Jang, and B. Y Shin. 1999. A study on the biodegradability of plastic films under controlled composing condition. J. Int. Industrial Technol. 27 : 107-116.
  15. Jung, J. S., D. W. Park, and H. S. Choi. 2023. Effect of biodegradable film mulching on soil environment and onion growth and yield. Korean J. Corp Sci. 68(3) : 207-215.
  16. Kim, Y. G., Y.H. Woo, H. H. Park, D. J. Lee, and Y. I. Kuk. 2024. Effects of various biodegradable mulching films on growth, yield, and soil environment in soybean cultivation. Korean J. Crop Sci. 69(1) : 34-48.
  17. Kononova, M. M. 1996. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility; Pergamon Press : Oxford, UK.
  18. Lee, H. J., M. J. Kim, H. L. Kim, Y. B. Kwack, J. K. Kwon, K. S. Park, H. G. Choi, and K. Bekhzod. 2015. Effects of biodegradable mulching film application on cultivation of garlic. Protected Hort. Plant Fac. 24(4) : 326-332.
  19. Lee, S. I., S. H. Sur, K. M. Hong, Y. S. Shin, S. H. Jang, and B. Y. Shin. 2001. A study on the properties of fully biophotodegradable composite film. J. Int. Industrial Technol. 29 : 129-134.
  20. Li, L. Z., Y. M. Luo, R. J. Li, Q. Zhou, and Y. Zhang. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3 : 929-937.
  21. Liu, Q., Y. Wang, J. Liu, X. Liu, Y. Dong, X. Huang, Z. Zhen, J. Lv, and W. He. 2022. Degradability and properties of PBAT-based biodegradable mulch films in field and their effects on cotton planting. Polymers 14 : 1-15.
  22. Luyt, A. S. and S. S. Malik. 2019. Can biodegradable plastics solve plastic solid waste accumulation?. Plastics to Energy 403-423.
  23. Narayan, R. 1994. Impact of governmental policies, regulations, and standards activities on an emerging biodegradable plastic industry In : Biodegradable Plastics and Polymers. Doi, Y. and Fukuda, K. (eds). Osaka. 261-272.
  24. Nawaz, A., L. Lal, R. K. Shrestha, and M. Farooq. 2017. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in Alfisol of Central Ohio. Land Degrad. Dev. 28 : 673-681.
  25. Ngouajio, M., R. Auras, R. T. Fernandez, and M. Rubio. 2008. Field performance of aliphatic-aromatic copolyester biodegradable mulch films in a fresh market tomato production system. HortTechnology 18(4) : 605-610.
  26. Qin, M., C. Chen, B. Song, M. Shen, C. Weicheng, H. Yang, G. Zeng, and J. Gong. 2021. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments?. J. Clean. Prod. 312 : 1-15.
  27. Reay, M. K., L. M. Greenfield, M. Graf, C. E. M. Lloyd, R. P. Evershed, D. R. Chadwick, and D. L. Jones. 2023. LDPE and biodegradable PLA-PBAT plastics differentially affect plant-soil nitrogen partitioning and dynamics in a Hordeum vulgare mesocosm. J. Hazard. Mater. 447 : 1-10.
  28. Ryu, K. E., and Y B. Kim. 1998. Biodegradation of polymers. Polymer Sci. Technol. 9 : 464-472.
  29. Scott, G. 1990. Photo-degradable plastic : Their role in the protection of the environment. Polymer. Deg. and Stabil. 29 : 136-143.
  30. Sintim, H. Y., S. Bandopadhyay, M. E. English, A. I. Bary, J. L. Gonzalez, J. M. DeBruyn, S. M. Schaeffer, C. Miles, and M. Flury. 2021. Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma 381 : 1-10.
  31. Song, J. H., R. J. Murphy, R. Narayan, and G. B. H. Davies. 2009. Biodegradable and compostable alternatives to conventional plastics. Phil. Trans. R. Soc. B. 364: 2127-2139.
  32. Souza, A. G., R. R. Ferreira, J. Harada, and D. S. Rosa. 2020. Field performance on lettuce crops of poly (butyleneadipate-co-terephthalate)/polylactic acid as alternative biodegradable composites mulching films. J. Appl. Polym. Sci. 138(11) : 1-13.
  33. Statistical Analysis System (SAS). 2000. SAS/STAT Users Guide, Version 7. Statistical Analysis System Institute, Cary, NC, USA.
  34. Yin, M., Y. Li, H. Feng, and P. Chen. 2019. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 216 : 127-137.
  35. Yin, M. H., Y. N. Li, Y. B. Xu, and C. M. Zhou. 2018. Effects of mulches on water use in a winter wheat/summer maize rotation system in Loess Plateau, China. J. Arid Land 2: 277-291.
  36. Zhang, N., U. M. Sainju, F. Zhao, R. Ghimire, C. Ren, Y. Liang, C. Yang, J. Wang. 2023. Mulching decreased the abundance of microbial functional genes in phosphorus cycling under maize. Appl. Soil Ecol. 187 : 10483.
  37. Zhou, L. M., F. M. Li, S. L. Jun, and Y. Song. 2009. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Res. 113 : 41-47.
  38. Zhou, L.M., S. L. Jin, C. A. Liu, Y. C. Xiong, J. T. Si, X. G. Li, and F. M. Li. 2012. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: opportunities and challenges in a semiarid agro-ecosystem. Field Crops Res. 126 : 181-188.