Acknowledgement
본 결과물은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학협력 기반 지역혁신 사업의 결과입니다(2021RIS-002). 본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(RS-2024-00358809).
References
- Korea Energy Agency (KEA), 2022 New and Renewable energy supply statistics final results (2023. 12).
- P. R. Brown, F. M. O'Sulivan, Shaping photovoltaic array output to align with changing wholesale electricity price profiles. Appl. Energy. 256, 113734 (2019).
- M. S. Hossain, H. Mahmood, Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast. IEEE. ISSN 2169-3536, DOI 10.1109/ACCESS.2020.3024901 (2020).
- KPX, Electricity market operation rules.
- G. M. Pitra, K. S. Sastry Musti, Dcuk curve with renewable energies and storage technologies, 13th International Conference on Computational Intelligence and Communication Networks, Lima, Peru, doi:10.1109/CICN51697.2021.13 (2021).
- K. S. Kwon, Review of the special act on the promotion of distributed energy (Proposal), KLGLA, Vol. 77, No. 23-1 (2023).
- W. S. Kim, H. H. Jo, Impact of photovoltaic generation expansion on Korea's electricity power system and the solution: Focusing on power system stability and supply and demand stability. KJECON. 27, 23-65 (2020).
- H. Huang, J. Xu, Z. Peng, S. Yoo, D, Yu, D. Huang, H. Qin, Cloud motion estimation for short term solar irradiation prediction, SmartGrid Communications IEEE International Conference, pp. 696-701 (2013).
- J. J. Song, Y. S. Jeong, S. H. Lee, Analysis of prediction model for solar power generation. J. of Digital Convergence. 12, 243-248 (2014).
- K. D. Kim, The development of the short term predict model for solar power generation. KSES. Vol. 33, No. 6 (2013).
- H. J. Na, K. S. Kim, Study on generation volume of floating solar power using historical insolation data. JKSCE. 43, 249-258 (2023).
- A. Mohammad, F. Mahjabeen, Revolutionizing solar energy: The impact of artificial intelligence on photovoltaic systems. J. Multidiscip. Res. 2, 117-127 (2023).
- C. L. Sergio, M. C. Ricardo, C. David, A. George, Deep and machine learning models to forecast photovoltaic power generation. Energies. 16, 4097 (2023).
- J. I. Lee, W. K. Park, I. W. Lee, S. H. Kim, Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy. KIEEME. 26, 335-363 (2022).
- F. Antonanzas-Torres, R. Urraca, J. Polo, O. Perpinan-Lamigueiro, R. Escobar , Clear sky solar irradiance models: A review of seventy models. Renewable Sustainable Energy Rev. 107, 374-387 (2019).
- J. H. Kim, M. H. Kim, O. H. Kwon, Y. J. Seok, J. W. Jeong, Generation of monthly averaged horizontal radiation based on a regional clearness estimatimg model. KSES. 30 (2010).
- Y. T. Lee, D. H. Kim, W. S. Sin, C. K. Kim, H. G. Kim, S. W. Han, A comparison of machine learning models in photovoltaic power generation forecasting. KIIE. 47, 444-458 (2021).