DOI QR코드

DOI QR Code

BT (BaTiO3)-TiO2-ZrO2계 유전체 세라믹스를 이용한 유전체 공진기 및 필터 특성

Characteristics of Dielectric Fabricated with BT (BaTiO3)-TiO2-ZrO2 Systems and the Dielectric Resonator Filter

  • 전용민 (한국공학대학교 신소재공학과) ;
  • 지영남 ((주)이랑텍 기업부설연구소) ;
  • 김성균 ((주)이랑텍 기업부설연구소) ;
  • 이재복 ((주)이랑텍 기업부설연구소) ;
  • 유시홍 (한국공학대학교 신소재공학과) ;
  • 이성의 (한국공학대학교 신소재공학과) ;
  • 문제도 (한국공학대학교 신소재공학과)
  • Yong Min Jeon (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Yeong Nam Ji (Research and Development Center, Erangtek) ;
  • Sunggyun Kim (Research and Development Center, Erangtek) ;
  • Jaebok Lee (Research and Development Center, Erangtek) ;
  • Si Hong Ryu (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Seong Eui Lee (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Je Do Mun (Department of Advanced Materials Engineering, Tech University of Korea)
  • 투고 : 2024.03.27
  • 심사 : 2024.08.02
  • 발행 : 2024.11.01

초록

Dielectric resonators with BT (BaTiO3), TiO2, and ZrO2 powders without using the rare earth oxide powders were fabricated for the target relative permittivity of between 30 and 40 and the filter characteristics of metal cavity filter with the dielectric resonators inside were evaluated. Powder characteristics such as particle size distributions and specific surface areas were measured for the composing raw powders to evaluate the powder states. After measuring and comparing the relative permittivity and dielectric losses of the dielectrics of three different compositions, the specific composition was determined (BT:TiO2:ZrO2=1:4:1 in mole) and the dielectric resonators were fabricated with that composition, which shows relative permittivity of around 35. The powder characteristics of mixed powders with the determined composition were also evaluated to investigate any agglomerates possibly formed in the process of powder mixing. Dielectric resonators were fabricated by the powder compaction (compaction pressure: 31 MPa) and firing method. The peak firing temperature was 1,300℃ and the holding time at the peak temperature was 3 hours. After firing, cylindrical resonators with one end closed were mechanically machined to eliminate any size differences in dielectric resonator which can be caused by the shrinkage difference during each firing process of resonator fabrication. After measuring the resonator characteristic in the frequency range from 3.6 GHz to 3.8 GHz by changing the height of dielectric resonator, the height of the resonator was determined to be 11.7 mm. Finally, filter characteristics of TM (Transverse Magnetic) mode metal cavity filters with the dielectric inside were measured and evaluated. The metal cavity filters with the dielectric resonators showed the insertion losses of below 1 dB with the band widths of 200 MHz and over 20 dB return losses from 3.6 GHz to 3.8 GHz, whose filter characteristics well satisfied the requirements of the band pass filters for the base stations and it was proved that the dielectrics using the proposed composition could be used as dielectric resonator.

키워드

과제정보

본 논문은 2021년도 산업통산자원부 소재부품기술개발사업의 지원을 받아 수행된 연구이며 (과제명: 글로벌 통신사업자 5G component 개발 과제번호: 20016657) 지원에 감사드립니다.

참고문헌

  1. Y. Ai, H. Lv, Y. Wang, Z. Liu, Y. He, D. Lin, L. Jia, and Y. Zhang, Ultrasonics, 132, 106988 (2023). doi: https://doi.org/10.1016/j.ultras.2023.106988
  2. Q. Li, S. Fu, R. Wang, C. Song, F. Zeng, and F. Pan, J. Alloys Compd., 740, 222 (2018). doi: https://doi.org/10.1016/j.jallcom.2018.01.049
  3. Q. S. Cheng, J. W. Bandler, and S. Koziel, IEEE Trans. Microwave Theory Tech., 58, 136 (2010). doi: https://doi.org/10.1109/TMTT.2009.2036395
  4. Y. Zhan, W. Qin, Q. Y. Lu, and J. X. Chen, ACES J., 32, 1015 (2017).
  5. H. Jantunen, T. Kangasvieri, J. Vahakangas, and S. Leppavuori, J. Eur. Ceram. Soc., 23, 2541 (2003). doi: https://doi.org/10.1016/S0955-2219(03)00155-9
  6. H. Wu, B. You, K. K. Gao, and X. G. Li, Electronics, 11, 4119 (2022). doi: https://doi.org/10.3390/electronics11244119
  7. J. H. Park and E. S. Kim, Processes, 11, 3235 (2023). doi: https://doi.org/10.3390/pr11113235
  8. H. Gong, X. Wang, S. Zhang, and L. Li, Mater. Res. Bull., 73, 233 (2016). doi: https://doi.org/10.1016/j.materresbull.2015.07.010
  9. M. B. Smith, K. Page, T. Siegrist, P. L. Redmond, E. C. Walter, R. Seshadri, L. E. Brus, and M. L. Steigerwald, J. Am. Chem. Soc., 130, 6955 (2008). doi: https://doi.org/10.1021/ja0758436
  10. N. H. Yusoff, R.A.M. Osman, M. S. Idris, K.N.D.K. Muhsen, and N.I.M. Nor, AIP Conf. Proc., 2203, 020038 (2020). doi: https://doi.org/10.1063/1.5142130
  11. Z. Tang, Z. Liu, and X. Zhu, Trans. Electr. Electron. Mater., 11, 155 (2010). doi: https://doi.org/10.4313/TEEM.2010.11.4.155
  12. S. Chao, V. Petrovsky, and F. Dogan, J. Mater. Sci., 45, 6685 (2010). doi: https://doi.org/10.1007/s10853-010-4761-4
  13. Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M. A. Abraham, J. M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, and J. J. Adams, Addit. Manuf., 27, 586 (2019). doi: https://doi.org/10.1016/j.addma.2019.04.005
  14. N. Korsunska, Y. Polishchuk, V. Kladko, X. Portier, and L. Khomenkova, Mater. Res. Express, 4, 035024 (2017). doi: https://doi.org/10.1088/2053-1591/aa6093
  15. S. V. Pol, V. G. Pol, A. Gedanken, G. I. Spijksma, J. Grinblat, R. Kalai Selvan, V. G. Kessler, G. A. Seisenbaeva, and S. Gohil, J. Phys. Chem. C, 111, 2484 (2007). doi: https://doi.org/10.1021/jp067109z