DOI QR코드

DOI QR Code

고출력 태양광 모듈을 위한 와이어 솔더링 조건에 따른 셀 스트링 특성

Characteristics of Cell Strings According to Wire Soldering Conditions for High Power Solar Module

  • 황서희 (성균관대학교 전자전기컴퓨터공학과) ;
  • 어승아 (성균관대학교 전자전기컴퓨터공학과) ;
  • 노요한 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • See Hee Hwang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Seung Ah Ur (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yo Han Noh (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jae Hyeong Lee (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 투고 : 2024.07.02
  • 심사 : 2024.07.16
  • 발행 : 2024.11.01

초록

MBB (multi-busbar) technology is a module technology to achieve high power, and the use of a number of thin circular metal wires increases light-receiving capacity and reduces resistance. In the process of interconnection using a wire, the stress of the cell increases depending on the degree of coupling between the wire and the cell and the degree of damage caused by heat, or the mobility of current decreases due to poor bonding. The degree of such loss is affected by IR lamp, hot plate temperature and wire thickness. In addition, the values of contact resistance were compared and analyzed to analyze the cause of the decrease in electrical characteristics. In this study, process condition optimization was carried out through peeling test, SEM analysis, EL test, and pre/post bonding efficiency characteristic analysis of the bonded cell according to process conditions, compared the contact resistance.

키워드

과제정보

본 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다[20213030010290, 장기 신뢰성(25년 이상)과 안정성이 확보된 건물형 태양광 핵심 소재 개발]. 본 논문은 2023년도 산업통상자원부의 재원으로 한국에너지 기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(RS-2023-00266248).

참고문헌

  1. Y. Noh, J. Yoo, and J. Lee, Curr. Photovoltaic Res., 10, 111 (2022).  doi: https://doi.org/10.21218/CPR.2022.10.4.111
  2. T. Panda, S Sadhukhan, S. Acharyya, P. Banerjee, A. Nandi, S. Bose, N. Mondal, G. Das, S. Maity, P. Chaudhuri, and H. Saha, Sol. Energy, 236, 790 (2022).  doi: https://doi.org/10.1016/j.solener.2022.03.051
  3. J. Kim, S. Ur, D. Lim, and J. Lee, J. Korean Sol. Energy Soc., 43, 63 (2023).  doi: https://doi.org/10.7836/kses.2023.43.3.063
  4. J. H. Kim, H. J. Son, and S. H. Kim, Curr. Photovoltaic Res., 7, 65 (2019).  doi: https://doi.org/10.21218/CPR.2019.7.3.065
  5. J. Walter, L. C. Rendler, C. Ebert, A. Kraft, and U. Eitner, Energy Procedia, 124, 515 (2017).  doi: https://doi.org/10.1016/j.egypro.2017.09.288
  6. A. Joshi, A. Khan, and A. Sp, Proc. 2019 Advances in Science and Engineering Technology International Conferences (ASET)(IEEE, Dubai, United Arab Emirates, 2019).  doi: https://doi.org/10.1109/ICASET.2019.8714488
  7. J. J. Lee, H. J. Son, and S. H. Kim, Curr. Photovoltaic Res., 5, 83 (2017).  doi: https://doi.org/10.21218/CPR.2017.5.3.083
  8. J. Park, Y. Jeon, M. Jang, M. Kim, and D. Lim, Curr. Photovoltaic Res., 9, 123 (2021).  doi: https://doi.org/10.21218/CPR.2021.9.4.123
  9. J. A. Nelson, The Physics of Solar Cells (World Scientific Publishing Company, 2003).