DOI QR코드

DOI QR Code

Establishment of the Dose Constraints Using the Frequency Distribution for the Annual Exposure Dose per Radiation Worker

방사선작업종사자 1인당 연간 피폭 선량에 대한 빈도 분포를 이용한 선량제약치 설정 방안

  • Sang-Min Park (Department of Radiological Science, Graduate School, Catholic University of Pusan) ;
  • Jeong-Min Seo (Department of Radiological Science, Graduate School, Catholic University of Pusan)
  • 박상민 (부산가톨릭대학교 일반대학원 방사선학과) ;
  • 서정민 (부산가톨릭대학교 일반대학원 방사선학과)
  • Received : 2024.06.24
  • Accepted : 2024.10.31
  • Published : 2024.10.31

Abstract

In this study, an indicator for setting dose constraints was presented using the frequency distribution of the annual exposure dose per radiation worker. To this end, from January 2017 to December 2019, we surveyed personal dosimeter reading values per month for 13 radiography inspection offices that had reported the establishment of a workplace to move and use radioisotopes, etc. for the purpose of radiographic testing (RT) in Korea, and performed a frequency analysis of the annual exposure dose per radiation worker. In this study, the indicator for setting dose constraints was based on the 95th percentile according to the recommendations of international organizations related to radiation protection. As a result, the dose constraints in the field of RT was set at an average of 5.15 mSv over the three-year investigation period. The nuclear energy-related business operator, if was set its own dose constraints proposed in this study and was operated successfully, were able to manage the exposure dose inequality of 52 people, equivalent to 5% of registered radiation workers, and could expect a reduction in collective dose of 760 man-mSv. Therefore, the nuclear energy-related business operator set its own dose constraints using the indicator for setting dose constraints proposed in this study, will be able to achieve optimization of protection by excluding exposure situations in which a dose level higher than the set dose constraint is expected from the process of establishing a protection plan.

본 연구는 방사선작업종사자 1인당 연간 피폭 선량에 대한 빈도 분포를 이용한 선량제약치 설정 지표를 제시하고자 하였다. 이를 위하여 2017년 1월부터 2019년 12월까지 국내의 방사선투과검사를 목적으로 작업장 개설 신고를 완료한 13개 사업소를 대상으로 1개월 단위의 개인 선량계 판독 값을 조사하고 방사선작업종사자 1인당 연간 피폭 선량에 대한 빈도 분석을 수행하였다. 본 연구에서 선량제약치 설정 지표는 방사선 방호 관련 국제기구의 권고에 따라 95 백분위수를 기준으로 설정하였다. 결과적으로 3년의 조사 기간 동안 방사선투과검사 분야의 선량제약치는 평균 5.15 mSv로 설정되었다. 원자력관계사업자가 본 연구에서 제안된 선량제약치를 자체적으로 설정하고 성공적으로 운영하였다고 가정할 때 등록된 방사선작업종사자의 5%에 해당하는 52명의 피폭 불평등을 관리할 수 있으며 760 man-mSv의 집단선량이 감소될 것으로 예상할 수 있었다. 따라서 원자력관계사업자가 본 연구에서 제안된 선량제약치 설정 지표를 이용하여 선량제약치를 자체적으로 설정하고 설정된 제한 값보다 높은 선량 준위가 예측되는 피폭 상황을 방호 계획 수립 과정에서 배제시킴으로서 방호의 최적화를 달성할 수 있을 것이다.

Keywords

References

  1. W. Ruhm, C. Clement, D. Cool, D. Laurier, F. Bochud, K. Applegate, T. Schneider, S. Bouffler, K. Cho, G. Hirth, M. Kai, S. Liu, S. Romanov, A. Wojcik, "Summary of the 2021 ICRP workshop on the future of radiological protection", Journal of Radiological Protection, Vol. 42, No. 2, pp. 1-22, 2022. http://dx.doi.org/10.1088/1361-6498/ac670e 
  2. Y. C. Chi, "A Modification to the Situation-based Scheme for Sorting Exposures Proposed in ICRP Publication 103", Health Physics, Vol. 122, No. 2, pp. 306-312, 2022. http://dx.doi.org/10.1097/HP.0000000000001484 
  3. International Commission on Radiological Protection, "The 2007 Recommendations of the International Commission on Radiological Protection", ICRP Publication 103, 2007. 
  4. International Commission on Radiological Protection, "1990 Recommendations of the International Commission on Radiological Protection", ICRP Publication 60, 1991. 
  5. International Commission on Radiological Protection, "The Optimisation of Radiological Protection : Broadening the Process", ICRP Publication 101b, 2006. 
  6. International Commission on Radiological Protection, "Ethical foundations of the system of radiological protection", ICRP Publication 138, 2018. 
  7. International Commission on Radiological Protection, "Use of dose quantities in radiological protection", ICRP Publication 147, 2021.
  8. K. W. Cho, Y. M. Kim, "Implementation of the ICRP 2007 recommendations in Korea", Applied Radiation and Isotopes, Vol. 67, No. 7-8, pp. 1286-1289, 2009. 
  9. V. Tsapaki, S. Balter, C. Cousins, O. Holmberg, D. L. Miller, P. Miranda, M. Rehani, E. Vano, "The International Atomic Energy Agency action plan on radiation protection of patients and staff in interventional procedures: Achieving change in practice", Physics in Medicine, Vol. 52, pp. 56-64, 2018. http://dx.doi.org/10.1016/j.ejmp.2018.06.634 
  10. International Commission on Radiological Protection, "Cost-.benefit analysis in the optimisation of radiological protection", ICRP Publication 37, 1983. 
  11. International Commission on Radiological Protection, "Implications of Commission Recommendations that Doses be Kept as Low as Readily Achievable", ICRP Publication 22, 1973. 
  12. International Commission on Radiological Protection, "Optimization and decision-making in radiological protection", ICRP Publication 55, 1989. 
  13. Korean Association for Radiation Application, "Survey on the Status of Radiation / RI Utilization in 2018", 2020. 
  14. Y. H. Ryu, J. H. Cho, K. R. Dong, W. K. Chung, J. W. Lee, E. J. Choi, "Survey on radiation safety management (RSM) among Korean radiation workers who operate radiation generators or handle radioactive isotopes", Archives of Environmental & Occupational Health, Vol. 69, No. 1, pp. 11-22, 2014. https://doi.org/10.1080/19338244.2012.701250 
  15. S. T. Kim, J. Yoo, "Analysis of the Radiological Safety Control Level Versus the Exposure of Radiation Workers in South Korea from 2008-17", Radiation Protection Dosimetry, Vol. 184, No. 1, pp. 98-108, 2019. http://dx.doi.org/10.1093/rpd/ncy190 
  16. Korea Institute of Nuclear Safety, "Information Analysis and Management for Safety Regulation on Radiation Worker", KINS/ER-190, Vol. 1-5, 2014. 
  17. Korea Institute of Nuclear Safety, "Analysis on the Risk Evaluation Model and Feasibility Study on Model Application of the KISOE System", KINS/HR-1461, 2016. 
  18. Y. J. Bae, "Study on the Risk Assessment Method at Workplace of Radiation Facilities according to Occupational Radiation Exposure", Master's Thesis, Daegu Catholic University, 2016. 
  19. R. Munbodh, T. M. Roth, K. L. Leonard, R. C. Court, U. Shukla, S. Andrea, M. Gray, G. Leichtman, E. E. Klein, "Real-time analysis and display of quantitative measures to track and improve clinical workflow", Journal of Applied Clinical Medical Physics, Vol. 23, No. 9, pp. e13610, 2022. http://dx.doi.org/10.1002/acm2.13610 
  20. Regulations on registration standards and inspection for reading work, Articles 4, 2023.
  21. M. Rodriguez Del Aguila, A. Gonzalez-Ramirez, "Sample size calculation", Allergol Immunopathol (Madr), Vol. 42, No. 5, pp. 485-492, 2014. 
  22. G. D'Arrigo, S. Roumeliotis, C. Torino, G. Tripepi, "Sample size calculation of clinical trials in geriatric medicine", Aging Clinical and Experimental Research, Vol. 33, No. 5, pp. 1209-1212, 2021. http://dx.doi.org/10.1007/s40520-020-01595-z 
  23. V. Kamenopoulou, G. Drikos, P. Dimitriou, "Dose constraints to the individual annual doses of exposed workers in the medical sector", European Journal of Radiology, Vol. 37, No. 3, pp. 204-208, 2001. http://dx.doi.org/10.1016/s0720-048x(00)00286-2 
  24. Nuclear Safety and Security Commission, "Nuclear safety yearbook 2020", 2021. 
  25. Korea Foundation of Nuclear Safety, "Exposure radiation dose analysis report in 2022", 2023.
  26. D. Richardson, S. Wing, J. Watson, S. Wolf, "Missing annual external radiation dosimetry data among Hanford workers", Journal of exposure analysis and environmental epidemiology, Vol. 9, No. 6, pp. 575-585, 1999. http://dx.doi.org/10.1038/sj.jea.7500064 
  27. A. De Giorgi, A. Bongiovanni, S. De Sio, S. Sernia, G. Adamo, G. La Torre, "Assessment of the Impact of Low-dose Ionizing Radiation Exposure on Health Care Workers: A Study of Methods Used from a Scoping Review", Health Physics, Vol. 125, No. 2, pp. 102-108, 2023. http://dx.doi.org/10.1097/HP.0000000000001693 
  28. Nuclear Energy Agency, "Considerations on the Concept of Dose Constraints", OECD/NEA, 2014. 
  29. R. Salinas Mariaca, "Dose constraint for Industrial gammagraphy developed by regulatory authorities", International Nuclear Information System (INIS), Vol. 42, No. 1, pp. 1-7, 2008. 
  30. S. Y. Chang, K. K. Chung, "Considerations on the Concept of Dose Constraint", Journal of Radiological Protection, Vol. 21, No. 4, pp. 329-330, 1996.