DOI QR코드

DOI QR Code

Sorption of Tc(IV) in Saline Solutions - I. Sorption on MX-80 and Granite in Ca-Na-Cl Solutions

  • Shinya Nagasaki (McMaster University) ;
  • Zhiwei Zheng (McMaster University) ;
  • Jianan Liu (McMaster University) ;
  • Jieci Yang (McMaster University) ;
  • Tammy (Tianxiao) Yang (Nuclear Waste Management Organization)
  • Received : 2024.04.26
  • Accepted : 2024.06.13
  • Published : 2024.09.30

Abstract

Technetium-99 is identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. The sorption behavior of Tc(IV) onto MX-80 and granite in Ca-Na-Cl solutions of varying ionic strength (0.05-1 mol·kgw-1 (m)) and across a pHm range of 4-9 was studied in this paper. Sorption of Tc(IV) was found to be independent of ionic strength in the range of 0.05 to 1 m for both MX-80 and granite. Sorption of Tc(IV) on MX-80 increased with pHm from 4 to 7 and then decreased with pHm from 8 to 9. Sorption of Tc(IV) on granite gradually increased with pHm from 4 to 8 and then became almost constant or slightly decreased with pHm from 8 to 9. A 2 site protolysis non-electrostatic surface complexation and cation exchange sorption model successfully simulated sorption of Tc(IV) on MX-80 and granite. Optimized values of surface complexation constants (log K0) are proposed.

Keywords

Acknowledgement

This work was funded by the Nuclear Waste Management Organization of Canada. The authors appreciate Prof. Koichiro Takao at the Tokyo Institute of Technology and Dr. Taishi Kobayashi at Kyoto University for their valuable comments on the experimental methods and the procedure for confirmation of the reduction of Tc(VII) to Tc(IV).

References

  1. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev.. 113(2), 1016-1062 (2013). 
  2. J.K. Lee, M.H. Baik, J.W. Choi, and M.S. Seo, "Development of a Web-based Sorption Database (KAERI-SDB) and Application to the Safety Assessment of a Radioactive Waste Disposal", Nucl. Eng. Des., 241(12), 5316-5324 (2011). 
  3. National Research Council, "A Study of the Isolation System for Geologic Disposal of Radioactive Wastes", Waste Isolation Systems Panels, Board on Radioactive Waste Management, Washington DC, USA (1983). 
  4. P. Gierszewski and A. Parmenter. Confidence in Safety: South Bruce Site, Nuclear Waste Management Organization Technical Report, NWMO-TR-2022-15 (2022). 
  5. P. Gierszewski and A. Parmenter. Confidence in Safety: Revell Site, Nuclear Waste Management Organization Technical Report, NWMO-TR-2022-14 (2022). 
  6. D.W. Oscarson, H.B. Hume, and J.W. Choi, "Diffusive Transport in Compacted Mixtures of Clay and Crushed Granite", Radiochim. Acta, 65(3), 189-194 (1994). 
  7. G.M.N. Baston, J.A. Berry, M. Brownsword, M.M. Cowper, T.G. Heath, and C.J. Tweed, "The Sorption of Uranium and Technetium on Bentonite, Tuff and Granodiorite", MRS Online Proceedings Library, 353, 989-996 (1994). 
  8. G.M.N. Baston, J.A. Berry, M. Brownsword, T.G. Heath, D.J. Blett, C.J. Tweed, and M. Yui, "The Effect of Temperature on the Sorption of Technetium, Uranium, Neptunium and Curium on Bentonite, Tuff and Granodiorite", MRS Online Proceedings Library, 465, 805-812 (1996). 
  9. D. Cui and T. Eriksen, "Reactive Transport of Sr, Cs and Tc Through a Column Packed With Fracture-Filling Material", Radiochm. Acta, 82(s1), 287-292 (1998). 
  10. J.A. Berry, M. Yui, and A. Kitamura. Sorption Studies of Radioelements on Geological Materials, Japan Atomic Energy Agency Technical Report, JAEA-Research 2007-074 (2007). 
  11. F.M. Huber, Y. Totskiy, R. Marsac, D. Schild, I. Pidchenko, T. Vitova, S. Kalmykov, H. Geckeis, and T. Schafer, "Tc Interaction With Crystalline Rock From Aspo (Sweden): Effect of In-situ Rock Redox Capacity", Appl. Geochem., 80, 90-101 (2017). 
  12. V. Jedinakova-Krizova, E. Hanslik, and H. Vinsova, "Quality Assessment of Hydrosphere in the Vicinity of Czech Nuclear Power Plants by Radioanalytical Methods", J. Radioanal. Nucl. Chem., 269(3), 747-753 (2006). 
  13. H. Vinsova, P. Vecernik, and V. Jedinakova-Krizova, "Sorption Characteristics of 99Tc Onto Bentonite Material With Different Additives Under Anaerobic Conditions", Radiochim. Acta, 94(8), 435-440 (2006). 
  14. B. Grambow, M. Fattahi, G. Montavon, C. Moisan, and E. Giffaut, "Sorption of Cs, Ni, Pb, Eu(III), Am(III), Cm, Ac(III), Tc(IV), Th, Zr, and U(IV) on MX 80 Bentonite: An Experimental Approach to Assess Model Uncertainty", Radiochim. Acta, 94(9-11), 627-636 (2006). 
  15. C. Bruggeman, A. Maes, and J. Vancluysen, "The Identification of FeS2 as a Sorption Sink for Tc(IV)", Phys. Chem. Earth, 32(8-14), 573-580 (2007). 
  16. Nuclear Waste Management Organization. Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock, NWMO Technical Report, NWMOTR-2017-02 (2017). 
  17. F.P. Bertetti. Determination of Sorption Properties for Sedimentary Rocks Under Saline, Reducing Conditions - Key Radionuclides, Nuclear Waste Management Organization Technical Report, NWMO TR2016-08 (2016). 
  18. T.H. Wang, T.E. Payne, J.J. Harrison, and S.P. Teng, "Interactions Involving Strontium and Various Organic Acids of the Surface of Bentonite (MX-80)", J. Radioanal. Nucl. Chem., 304(1), 95-105 (2015). 
  19. S. Lu, Z. Guo, C. Zhang, and S. Zhang, "Sorption of Th(IV) on MX-80 Bentonite: Effect of pH and Modeling", J. Radioanal. Nucl. Chem., 287(2), 621-628 (2011). 
  20. D.D. Shao, D. Xu, S.W. Wang, Q.H. Fang, W.S. Wu, Y.H. Dong, and X.K. Wang, "Modeling of Radionickel Sorption on MX-80 Bentonite as a Function of pH and Ionic Strength", Sci. China Ser. B: Chem., 52(3), 362-371 (2009). 
  21. G.D. Sheng, D.D. Shao, Q.H. Fang, D. Xu, Y.Y. Chen, and X.K. Wang, "Effect of pH and Ionic Strength on Sorption of Eu(III) to MX-80 Bentonite: Batch and XAFS Study", Radiochim. Acta, 97(11), 621-630 (2009). 
  22. K.V. Ticknor and J. McMurry, "A Study of Selenium and Tin Sorption on Granite and Goethite", Radiochim. Acta, 73(3), 149-156 (1996). 
  23. P. Cerny, B.J. Fryer, F.J. Longstaffe, and H.Y. Tammemagi, "The Archean Lac du Bonnet Batholith, Manitoba: Igneous History, Metamorphic Effects, and Fluid Overprinting", Geochim. Cosmochim. Acta, 51(3), 421-438 (1987). 
  24. A.P.S. Selvadurai, A. Blain-Coallier, and P.A. Selvadurai, "Estimates for the Effective Permeability of Intact Granite Obtained From the Eastern and Western Flanks of the Canadian Shield", Minerals, 10(8), 667 (2020). 
  25. R. Everitt, "Subsurface Fracture Distribution and Its Correlation With the Shape and Thickness of the Lac du Bonnet bBtholith", Bull. Eng. Geol. Environ., 78, 3863-3874 (2019). 
  26. R.A. Everitt and E.Z. Lajtai, "The Influence of Rock Fabric on Excavation Damage in the Lac du Bonnett Granite", Int. J. Rock Mech. Min. Sci., 41(8), 1277-1303 (2004). 
  27. A. Brown, N.M. Soonawala, R.A. Everitt, and D.C. Kamineni, "Geology and Geophysics of the Underground Research Laboratory Site, Lac du Bonnet Batholith, Manitoba", Can. J. Earth Sci., 26(2), 404-425 (1989). 
  28. K. Takao, Private communication (2018). 
  29. T. Kobayashi, Private communication (2019). 
  30. T. Kobayashi, A.C. Scheinost, D. Fellhauer, X. Gaona, and M. Altmaier, "Redox Behavior of Tc(VII)/Tc(IV) Under Various Reducing Conditions in 0.1 M NaCl Solutions", Radiochim. Acta, 101(5), 323-332 (2013). 
  31. A. Baumann, E. Yalcintas, X. Gaona, M. Altmaier, and H. Geckeis, "Solubility and Hydrolysis of Tc(IV) in Dilute to Concentrated KCl Solutions: An Extended Thermodynamic Model for Tc4+-H+-K+-Na+-Mg2+-Ca2+-OH--Cl--H2O(l) Mixed Systems", New J. Chem., 41(17), 9077-9086 (2017). 
  32. M. Altmaier, V. Metz, V. Neck, R. Muller, and Th. Fanghanel, "Solid-Liquid Equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl.4H2O(cr) in the System Mg-Na-H-OH-Cl-H2O at 25℃", Geochim. Cosmochim. Acta, 67(19), 3595-3601 (2003). 
  33. M. Altmaier, V. Neck, and Th. Fanghanel, "Solubility of Zr(IV), Th(IV) and Pu(IV) Hydrous Oxides in CaCl2 Solutions and the Formation of Ternary Ca-M(IV)-OH Complexes", Radiochim. Acta, 96(9-11), 541-550 (2008). 
  34. S. Nagasaki, J. Riddoch, T. Saito, J. Goguen, A. Walker, and T.T. Yang, "Sorption Behaviour of Np(IV) on Illite, Shale and MX-80 in High Ionic Strength Solutions", J. Radioanal. Nucl. Chem., 313, 1-11 (2017). 
  35. D.L. Parkhurst and C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43 (2013). 
  36. Japan Atomic Energy Agency. April 27 2021. "Thermodynamic DataBase." JAEA hompage. Accessed Dec. 7 2023. Available from: https://www.jaea.go.jp/04/tisou/english/database/database.html. 
  37. E. Colas and A. Valls. Radionuclide Solubility Calculations (Phase 1), Nuclear Waste Management Technical Report, NWMO-TR-2021-02 (2021). 
  38. L. Ciavatta, "The Specific Interaction Theory in Evaluating Ionic Equilibria", Ann. Chim., (Rome), 70, 551-567 (1980). 
  39. M.H. Bradbury and B. Baeyens, "Modelling the Sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on Montmorillonite: Linear Free Energy Relationships and Estimates of Surface Binding Constants for Some Selected Heavy Metals and Actinides", Geochim. Cosmochim. Acta, 69(4), 875-892 (2005). 
  40. A. Walker, J. Racette, T. Saito, T. Yang, and S. Nagasaki, "Sorption of Se(-II) on Illite, MX-80 Bentonite, Shale, and Limestone in Na-Ca-Cl Solutions", Nucl. Eng. Technol., 54(5), 1616-1622 (2022). 
  41. Y. Iida, T. Yamaguchi, T. Tanaka, and K. Hemmi, "Sorption Behavior of Thorium Onto Granite and Its Constituent Minerals", J. Nucl. Sci. Technol., 53(10), 1573-1584 (2016). 
  42. J.A. Davis and D.B. Kent, "Surface Complexation Modeling in Aqueous Geochemistry", Rev. Mineral. Geochem., 23(1), 177-260 (1990). 
  43. W. Zhou, D. Xian, X. Su, Y. Li, W. Que, Y. Shi, J. Wang, and C. Liu, "Macroscopic and Spectroscopic Characterization of U(VI) Sorption on Biotite", Chemosphere, 255, 126942 (2020).