Acknowledgement
이 연구는 한국 정부가 지원하는 한국연구재단(NRF) 지원금(RS-2023-00213534) 및 교육부에서 지원하는 지역혁신전략(RIS) 프로젝트(2023RIS-007)의 일환과 국립부경대학교 자율창의학술연구비(2024년)에 의하여 연구으로 수행되었음.
References
- W. Shi, Y. Guo, and Y. Liu, When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things, Adv. Mater., 32, 1901493 (2020).
- C. Xu, D. Jiang, Y. Ge, L. Huang, Y. Xiao, X. Ren, X. Liu, Q. Zhang, and Y. Wang, A PEDOT:PSS conductive hydrogel incorporated with Prussian blue nanoparticles for wearable and noninvasive monitoring of glucose, Chem. Eng. J., 431, 134109 (2022).
- J. Yoo, L. Yan, S. Lee, H. Kim, and H. J. Yoo, A wearable ECG acquisition system with compact planar-fashionable circuit boardbased shirt, IEEE Trans. Inf. Technol. Biomed., 13, 897-902 (2009).
- Y. Hong, Z. Lin, Y. Yang, T. Jiang, J. Shang, and Z. Luo, Biocompatible conductive hydrogels: Applications in the field of biomedicine, Int. J. Mol. Sci., 23, 4578 (2022).
- Y. Zhang, Q. Tang, J. Zhou, C. Zhao, J. Li, H. Wang, Conductive and eco-friendly biomaterials-based hydrogels for noninvasive epidermal sensors: A review, ACS Biomater. Sci. Eng., 10, 191-218 (2024).
- G. Kougkolos, M. Golzio, L. Laudebat, Z. Valdez-Nava, and E. Flahaut, Hydrogels with electrically conductive nanomaterials for biomedical applications, J. Mater. Chem. B, 11, 2036-2062 (2023).
- K. Nagamine, S. Chihara, H. Kai, H. Kaji, and M. Nishizawa, Totally shape-conformable electrode/hydrogel composite for on-skin electrophysiological measurements, Sens. Actuators B Chem., 237, 49-53 (2016).
- F. Ghorbanizamani, H. Moulahoum, E. Guler Celik, and S. Timur, Ionic liquids enhancement of hydrogels and impact on biosensing applications, J. Mol. Liq., 357, 119075 (2022).
- Q. Zhang, X. Liu, J. Zhang, L. Duan, and G. Gao, A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance, J. Mater. Chem. A, 9, 22615-22625 (2021).
- W. Liu, R. Xie, J. Zhu, J. Wu, J. Hui, X. Zheng, F. Huo, and D. Fan, A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors, npj Flex. Electron., 6, 68 (2022).
- D. Lee, S. Cho, H. S. Park, and I. Kwon, Ocular drug delivery through pHEMA-hydrogel contact lenses co-loaded with lipophilic vitamins, Sci. Rep., 6, 34194 (2016).
- V. Manigandan, R. Karthik, S. Ramachandran, and S. Rajagopal, Chitosan applications in food industry. In: A. M. Grumezescu and A. M. Holban (eds.). Biopolymers for Food Design, 469-491, Academic Press, Cambridge, Massachusetts, United States (2018).
- E. Graf and J. W. Eaton, Antioxidant functions of phytic acid, Free Radical Biol. Med., 8, 61-69 (1990).
- Z. Wang, Y. C. Lai, Y. T. Chiang, J. M. Scheiger, S. Li, Z. Dong, Q. Cai, S. Liu, S. H. Hsu, C. C. Chou, and P. A. Levkin, Tough, self-healing, and conductive elastomer ionic peggel, ACS Appl. Mater. Interfaces, 14, 50152-50162 (2022).
- C. Yang, Q. Wu, J. Liu, J. Mo, X. Li, C. Yang, Z. Liu, J. Yang, L. Jiang, W. Chen, H. J. Chen, J. Wang, and X. Xie, Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure, Nat. Commun., 13, 2556 (2022).
- Y. Shi, Y. Ding, W. Wang, and D. Yu, High performance zwitterionic hydrogels for ECG/EMG signals monitoring, Colloids Surf. A: Physicochem. Eng. Asp., 675, 132081 (2023).
- Y. M. Gao, Z. Y. Li, X. J. Zhang, J. Zhang, Q. F. Li, and S. B. Zhou, One-pot synthesis of bioadhesive double-network hydrogel patch as disposable wound dressing, ACS Appl. Mater. Interfaces, 15, 11496-11506 (2023).
- N. Thakur, A. Chaudhary, A. Chakraborty, R. Kumar, and T. K. Sarma, Ion conductive phytic acid-G quadruplex hydrogel as electrolyte for flexible electrochromic device, ChemNanoMat, 7, 613-619 (2021).
- N. B. Alsaafeen, S. S. Bawazir, K. K. Jena, A. Seitak, B. Fatma, C. Pitsalidis, A. Khandoker, and A. M. Pappa, One-pot synthesis of a robust crosslinker-free thermo-reversible conducting hydrogel electrode for epidermal electronics, ACS Appl. Mater. Interfaces, Doi:10.1021/acsami.3c10663.
- C. Liu, R. Zhang, Y. Wang, J. Qu, J. Huang, M. Mo, N. Qing, and L. Tang, Tough, anti-drying and thermoplastic hydrogels consisting of biofriendly resources for a wide linear range and fast response strain sensor, J. Mater. Chem. A, 11, 2002-2013 (2023).
- J. Hua, M. Su, X. Sun, J. Li, Y. Sun, H. Qiu, Y. Shi, and L. Pan, Hydrogel-based bioelectronics and their applications in health monitoring, Biosensors, 13, 696 (2023).
- M. W. Tibbitt, A. M. Kloxin, L. A. Sawicki, and K. S. Anseth, Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels, Macromolecules, 46, 2785-2792 (2013).
- B. Pejcic and R. De Marco, Impedance spectroscopy: Over 35 years of electrochemical sensor optimization, Electrochim. Acta, 51, 6217-6229 (2006).
- K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Electrical impedance of spin-coatable ion gel films, J. Phys. Chem. B, 115, 3315-3321 (2011).
- S. Zhang, K. H. Lee, C. D. Frisbie, and T. P. Lodge, Ionic conductivity, capacitance, and viscoelastic properties of block copolymer-based ion gels, Macromolecules, 44, 940-949 (2011).
- D. Lou, C. Wang, Z. He, X. Sun, J. Luo, and J. Li, Robust organohydrogel with flexibility and conductivity across the freezing and boiling temperatures of water, Chem. Commun., 55, 8422-8425 (2019).
- J. Zhang, Q. Wang, and Z. Cao, Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions, Chin. Phys. B, 29, 087804 (2020).
- Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang, X. Wang, X. Jin, B. Xiong, S. Bai, and C. Zhi, Lean-water hydrogel electrolyte for zinc ion batteries, Nat. Commun., 14, 3890 (2023).
- X. He, S. Yang, Q. Pei, Y. Song, C. Liu, T. Xu, and X. Zhang, Integrated smart janus textile bands for self-pumping sweat sampling and analysis, ACS Sensors, 5, 1548-1554 (2020).