DOI QR코드

DOI QR Code

Effect of Master Batch and Compatibilizer on the Physical and Rheological Properties of PP/CNF Composite

PP/CNF 복합체의 물리적 성질 및 유변학적 특성에 대한 마스터배치와 상용화제의 영향

  • San Kang (Major in Polymer Science and Engineering, Kongju National University) ;
  • Yoo Jin Lee (Major in Polymer Science and Engineering, Kongju National University) ;
  • Youn Cheol Kim (Major in Polymer Science and Engineering, Kongju National University)
  • 강산 (공주대학교 신소재공학부 고분자공학전공) ;
  • 이유진 (공주대학교 신소재공학부 고분자공학전공) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Received : 2024.08.20
  • Accepted : 2024.09.11
  • Published : 2024.10.10

Abstract

Polypropylene (PP)/CNF composites containing 3, 7, and 10 phr of cellulose nanofibers (CNF) were manufactured using a twin-screw extruder. CNF was introduced in the form of powder or master batch (MB) into ethylene-acrylic acid copolymer (EEA), and maleic anhydride grafted PP (PP-g-MAH) was used as a compatibilizer. The results of measuring the tensile strength and flexural strength showed that the degree of improvement in the mechanical properties of the PP/CNF composites applied with the compatibilizer was the greatest. This was confirmed by the morphological analysis of SEM, which was due to the increased compatibility between PP and CNF. It was confirmed that the complex viscosity of the PP/CNF composite in the low frequency range was higher than that of pure PP, but there was no significant difference in processing characteristics due to the increase in shear thinning phenomenon.

이축압출기를 이용하여 셀룰로오스 나노섬유(CNF)가 3, 7, 10 phr 함유된 폴리프로필렌(PP)/CNF 복합체를 제조하였다. CNF는 분말 또는 에틸렌-아크릴산 공중합체(EEA)에 마스터배치(MB) 형태로 투입되었으며, 상용화제로 무수말레인산 그라프트 PP (PP-g-MAH)를 사용하였다. 인장강도와 굴곡강도를 측정한 결과 상용화제가 적용된 PP/CNF 복합체의 기계적특성 개선 정도가 가장 크게 나타났으며, 이는 PP와 CNF 사이의 상용성 증가에 의한 것임이 SEM의 형태학 분석 결과 확인되었다. 순수 PP 대비 PP/CNF 복합체의 저 주파수 영역에서의 복소점도는 증가하지만 면찰담화(shear thinning) 현상의 증가로 가공특성에는 큰 차이가 없음을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-004)과 환경부의 폐자원에너지화 전문인력 양성사업의 지원으로 수행된 것입니다.

References

  1. Y. N. Lee, S. S. Park, and K. R. Ha, Preparation and properties of eco-friendly polyurethane nanocomposites using cellulose nanocrystals with amino group as fillers, Polymer, 44, 397-407 (2020). 
  2. R. Arun, R. Shruthy, R. Preetha, and V. Sreejit, Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging, Chemosphere, 291, 132786 (2022) 
  3. T. Chen, H. Wang, J. Wang, Q. Fu, and Y. Tang, Preparation and characterization of lignin containing cellulose nanofiber from moso bamboo via acidified choline chloride/ethylene glycol pretreatment combined with homogenization industrial crops and products, Ind. Crops Prod., 202, 117115 (2023). 
  4. M. K. Thakur, R. K. Gupta, and V. K. Thakur, Surface modification of cellulose using silane coupling agent, Carbohydr. Polym., 111, 849-855 (2014). 
  5. S. Goo, H. Park, S. Yook, S. Y. Park, and H. J. Youn, Preparation of hydrophobized cellulose nanofibril film with high strength using AKD, J. Korea TAPPI, 50, 34-41 (2018). 
  6. J. Lee, J. Choi, and K. Koo, Development of retort packaging material using cellulose nano fiber, Text. Coloration Finish., 33, 40-47 (2021). 
  7. H. J. Yoon, B. M. Gil, J. H. Lee, J. E. Park, J. Lim, M. J. Jo, K. Jung, and J. J. Wie, Thermal and mechanical properties of polypropylene/cellulose nanofiber composites, Polym. Korea, 44, 255-263 (2020). 
  8. K. H. Kim, Types and development trend of lightweight metal materials for automobiles, Trends Metals Mater. Eng., 27, 4-9 (2014). 
  9. H. D. Rozman, S. H. Shannon-Ong, A. B. Azizah, and G. S. Tay, Preliminary study of non-woven composite: Effect of needle punching and kenaf fiber loadings on non-woven thermoplastic composites prepared from kenaf and polypropylene fiber, J. Polym. Environ., 21, 1032-1039 (2013). 
  10. L. Wang, K. Okada, Y. Hikima, M. Ohshima, T. Sekiguchi, and H, Yano, Effect of cellulose nanofiber (CNF) surface treatment on cellular structures and mechanical properties of polypropylene/CNF nanocomposite foams via core-back foam injection molding, Polymers, 11, 249-267 (2019). 
  11. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Interfacial evaluation of modified Jute and Hemp fibers/polypropylene-maleic anhydride polypropylene copolymers composites using micromechanical technique and nondestructive acoustic emission, Compos. Sci. Technol., 66, 2686-2699 (2006). 
  12. H. S. Kim, B. H. Lee, S. W. Choi, S. M. Kim, and H. J. Kim, The effect of types of maleic anhydride-grafted polypropylene on the interfacial adhesion properties of bio-flour-filled polypropylene composites, Composites A, 38, 1473-1482 (2007). 
  13. V. Abhijit, T. Johannes, K. Sahlin-Sjovold, R. Mikael, and A. Boldizar, Melt processing of ethylene-acrylic acid copolymer composites reinforced with nanocellulose, Polym. Eng. Sci., 60, 956-967 (2020). 
  14. J. S. Kim and Y. C. Kim, Effect of polypropylene branching and maleic anhydride graft on CNF dispersity of polypropylene (PP)/cellulose nanofiber (CNF) composite, Polym. Korea, 44, 861-867 (2020). 
  15. F. H. Su and H. X. Huang, Influence of polyfunctional monomer on melt strength and rheology of long-chain branched polypropylene by reactive extrusion, J. Appl. Polym. Sci., 116, 2557-2565 (2010).