Acknowledgement
이 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-004)과 환경부의 폐자원에너지화 전문인력 양성사업의 지원으로 수행된 것입니다.
References
- Y. N. Lee, S. S. Park, and K. R. Ha, Preparation and properties of eco-friendly polyurethane nanocomposites using cellulose nanocrystals with amino group as fillers, Polymer, 44, 397-407 (2020).
- R. Arun, R. Shruthy, R. Preetha, and V. Sreejit, Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging, Chemosphere, 291, 132786 (2022)
- T. Chen, H. Wang, J. Wang, Q. Fu, and Y. Tang, Preparation and characterization of lignin containing cellulose nanofiber from moso bamboo via acidified choline chloride/ethylene glycol pretreatment combined with homogenization industrial crops and products, Ind. Crops Prod., 202, 117115 (2023).
- M. K. Thakur, R. K. Gupta, and V. K. Thakur, Surface modification of cellulose using silane coupling agent, Carbohydr. Polym., 111, 849-855 (2014).
- S. Goo, H. Park, S. Yook, S. Y. Park, and H. J. Youn, Preparation of hydrophobized cellulose nanofibril film with high strength using AKD, J. Korea TAPPI, 50, 34-41 (2018).
- J. Lee, J. Choi, and K. Koo, Development of retort packaging material using cellulose nano fiber, Text. Coloration Finish., 33, 40-47 (2021).
- H. J. Yoon, B. M. Gil, J. H. Lee, J. E. Park, J. Lim, M. J. Jo, K. Jung, and J. J. Wie, Thermal and mechanical properties of polypropylene/cellulose nanofiber composites, Polym. Korea, 44, 255-263 (2020).
- K. H. Kim, Types and development trend of lightweight metal materials for automobiles, Trends Metals Mater. Eng., 27, 4-9 (2014).
- H. D. Rozman, S. H. Shannon-Ong, A. B. Azizah, and G. S. Tay, Preliminary study of non-woven composite: Effect of needle punching and kenaf fiber loadings on non-woven thermoplastic composites prepared from kenaf and polypropylene fiber, J. Polym. Environ., 21, 1032-1039 (2013).
- L. Wang, K. Okada, Y. Hikima, M. Ohshima, T. Sekiguchi, and H, Yano, Effect of cellulose nanofiber (CNF) surface treatment on cellular structures and mechanical properties of polypropylene/CNF nanocomposite foams via core-back foam injection molding, Polymers, 11, 249-267 (2019).
- J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Interfacial evaluation of modified Jute and Hemp fibers/polypropylene-maleic anhydride polypropylene copolymers composites using micromechanical technique and nondestructive acoustic emission, Compos. Sci. Technol., 66, 2686-2699 (2006).
- H. S. Kim, B. H. Lee, S. W. Choi, S. M. Kim, and H. J. Kim, The effect of types of maleic anhydride-grafted polypropylene on the interfacial adhesion properties of bio-flour-filled polypropylene composites, Composites A, 38, 1473-1482 (2007).
- V. Abhijit, T. Johannes, K. Sahlin-Sjovold, R. Mikael, and A. Boldizar, Melt processing of ethylene-acrylic acid copolymer composites reinforced with nanocellulose, Polym. Eng. Sci., 60, 956-967 (2020).
- J. S. Kim and Y. C. Kim, Effect of polypropylene branching and maleic anhydride graft on CNF dispersity of polypropylene (PP)/cellulose nanofiber (CNF) composite, Polym. Korea, 44, 861-867 (2020).
- F. H. Su and H. X. Huang, Influence of polyfunctional monomer on melt strength and rheology of long-chain branched polypropylene by reactive extrusion, J. Appl. Polym. Sci., 116, 2557-2565 (2010).