DOI QR코드

DOI QR Code

Research on accurate morphology predictive control of CFETR multi-purpose overload robot

  • Congju Zuo (Department of Information Engineering, Army Academy of Artillery and Air Defense) ;
  • Yong Cheng (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Hongtao Pan (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Guodong Qin (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Pucheng Zhou (Department of Information Engineering, Army Academy of Artillery and Air Defense) ;
  • Liang Xia (Department of Information Engineering, Army Academy of Artillery and Air Defense) ;
  • Huan Wang (Department of Information Engineering, Army Academy of Artillery and Air Defense) ;
  • Ruijuan Zhao (Department of Information Engineering, Army Academy of Artillery and Air Defense) ;
  • Yongqiang Lv (Department of Information Engineering, Army Academy of Artillery and Air Defense) ;
  • Xiaoyan Qin (Department of Information Engineering, Army Academy of Artillery and Air Defense) ;
  • Weihua Wang (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Qingxi Yang (Institute of Plasma Physics, Chinese Academy of Science)
  • Received : 2023.12.02
  • Accepted : 2024.06.02
  • Published : 2024.10.25

Abstract

The CFETR multipurpose overload robot (CMOR) is a critical component of the fusion reactor remote handling system. To accurately calculate and visualize the structural deformation and stress characteristics of the CMOR motion process, this paper first establishes a CMOR kinematic model to analyze the unfolding and working process in the vacuum chamber. Then, the dynamic model of CMOR is established using the Lagrangian method, and the rigid-flexible coupling modeling of CMOR links and joints is achieved using the finite element method and the linear spring damping equivalent model. The co-simulation results of the CMOR rigid-flexible coupled model show that when the end load is 2000 kg, the extreme value of the end-effector position error is more than 0.12 m, and the maximum stress value is 1.85 × 108 Pa. To utilize the stress-strain data of CMOR, this paper designs a CMOR morphology prediction control system based on Unity software. Implanting CMOR finite element analysis data into the Unity environment, researchers can monitor the stress strain generated by different motion trajectories of the CMOR robotic arm in the control system. It provides a platform for subsequent research on CMOR error compensation and extreme operation warnings.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12305251, PFXY230101018) the Postdoctoral Fellowship Program of CPSF (Grant Nos. GZB20230770), and the Comprehensive Research Facility for Fusion Technology Program of China (Grant Nos. 2018-000052-73-01-001228).

References

  1. M. Lei, Y. Song, S. Liu, et al., Conceptual design of the HCCB blanket system integration for CFETR, Int. J. Energy Res. 43 (8) (2019) 3306-3312.
  2. L. Chris, T. Luke, W. Jerome, et al., Pipe maintenance tooling development for the ITER divertor remote handling system, Fusion Eng. Des. 136 (2018) 983-987.
  3. G. Qin, A. Ji, Y. Cheng, et al., Position error compensation of the multi-purpose overload robot in nuclear power plants, Nucl. Eng. Technol. 53 (8) (2021) 2708-2715.
  4. C. Zuo, G. Qin, C. Wan, et al., Adaptive motion planning for CFETR multipurpose overload robot based on iterative tractrix, Fusion Eng. Des. 196 (2023)
  5. G. Liu, X. Wu, Y. Chen, et al., Analysis of influences of end position mass and joint rotary inertia on motion stability of a flexible manipulator arm, China Mech. Eng. 25 (4) (2014) 480-485.
  6. K.S. Anderson, J.H. Critchley, Improved Order-N'performance algorithm for the simulation of constrained multi-rigid-body dynamic systems, Multibody Syst. Dyn. 9 (2003) 185-212.
  7. C.G. Leonard, D. Nicolae, G. Ionut, et al., Dynamic and modal analysis of a snake like robot, Appl. Mech. Mater. 896 (2020) 203-210.
  8. J. Peng, W. Xu, T. Yang, et al., Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot, Nonlinear Dynam. 101 (1) (2020) 233-253.
  9. J.F. Peza-Solis, G. Silva-Navarro, O.A. Garcia-Perez, et al., Trajectory tracking of a single flexible-link robot using a modal cascaded-type control, Appl. Math. Model. 104 (2022) 531-547.
  10. C.H. Choi, A. Tesini, R. Subramanian, et al., Multi-purpose deployer for ITER in-vessel maintenance, Fusion Eng. Des. 98-99 (2015) 1448-1452.
  11. S.K. Dwivedy, P. Eberhard, Dynamic analysis of flexible manipulators, a literature review, Mech. Mach. Theor. 41 (7) (2006) 749-777.
  12. M.S. Manuelraj, P. Dutta, K.K. Gotewal, et al., Structural analysis of ITER multi-purpose deployer, Fusion Eng. Des. 109 (2016) 1296-1301.
  13. E. Abele, M. Weigold, S. Rothenbucher, Modeling and identification of an industrial robot for machining applications, CIRP Ann-Manuf. Techn. 56 (1) (2007) 387-390.
  14. N. Liu, X. Zhang, L. Zhang, et al., Study on the rigid-flexible coupling dynamics of welding robot, Wireless Pers. Commun. 102 (2018) 1683-1694.
  15. F. Tao, J. Cheng, Q. Qi, et al., Digital twin-driven product design, manufacturing and service with big data, Int. J. Adv. Manuf. Technol. 94 (2018) 3563-3576.
  16. F. Tao, B. Xiao, Q. Qi, et al., Digital twin modeling, J. Manuf. Syst. 64 (2022) 372-389.
  17. K. Li, Y. Liu, S. Wang, et al., Multifidelity data fusion based on gradient-enhanced surrogate modeling method, J. Mech. Des. 143 (12) (2021) 121704.
  18. X. Song, L. Lv, W. Sun, et al., A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models, Struct. Multidiscip. Optim. 60 (2019) 965-981.
  19. G. Qin, A. Ji, W. Wang, et al., Analyzing trajectory tracking accuracy of a flexible multi-purpose deployer, Fusion Eng. Des. 151 (2020) 111396.
  20. X. Lai, S. Wang, Z. Guo, et al., Designing a shape-performance integrated digital twin based on multiple models and dynamic data: a boom crane example, J. Mech. Des. 143 (7) (2021) 071703.
  21. C. Zuo, G. Qin, C. Wan, et al., Adaptive motion planning for CFETR multipurpose overload robot based on iterative tractrix, Fusion Eng. Des. 196 (2023) 113988.