DOI QR코드

DOI QR Code

Evaluation of influence of dissolved oxygen on corrosion behaviors of FeCrW model alloys in 360 ℃ water

  • Jun Yeong Jo (School of Mechanical Engineering, Pusan National Univ. (PNU)) ;
  • Chi Bum Bahn (School of Mechanical Engineering, Pusan National Univ. (PNU)) ;
  • Hwasung Yeom (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
  • Received : 2023.12.25
  • Accepted : 2024.06.02
  • Published : 2024.10.25

Abstract

The dissolved oxygen in a coolant can affect the oxidation properties of structural materials. A desirable oxide phase formation is achieved by manipulating the oxygen level in the coolant, which can mitigate structural material degradation in nuclear power plants. Therefore, the role of dissolved oxygen in the corrosion of structural materials in aqueous environments needs to be understood. In this study, a short-term corrosion test (up to 300 h) of Ferritic/Martensitic steels (F/M steels; FeCrW model alloys), namely, Fe12Cr1W, Fe9Cr1W, and Fe9Cr, in stagnant water at 360 ℃ was performed in a pressurized autoclave with the dissolved oxygen concentration controlled to 1 ppm or a very low level (<1 ppm). The results of the corrosion tests showed that an increase in the oxygen level in the water elevated the corrosion potential, allowing the phase transition of iron oxide from magnetite (Fe3O4) to hematite (Fe2O3), whereas there was no significant correlation between the concentrations of the alloying elements Cr and W and the oxide growth rate. In addition, hematite was found to mitigate further oxide growth. Finally, a mechanism for the growth of the initial oxide layer was proposed based on the experimental results.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000410). This work was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Korea government (Ministry of Science and ICT) (RS-2022-00156059).

References

  1. C.H. Lee, et al., Reduced Activation Steel Material development progress for fusion nuclear reactor application, Trends in Metals & Materials Engineering 32 (6) (2019) 4-15.
  2. T. Allen, et al., Corrosion of candidate materials for supercritical water-cooled reactors, in: Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2005.
  3. T. Hirose, et al., Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water, J. Nucl. Mater. 367 (2007) 1185-1189.
  4. A. Kanai, et al., Corrosion behavior of F82H exposed to high temperature pressurized water with a rotating apparatus, J. Nucl. Mater. 455 (1-3) (2014) 431-435.
  5. M. Nakajima, et al., Corrosion Properties of F82H in Flowing High Temperature Pressurized Water, Plasma Fusion, 2015.
  6. X. Ren, K. Sridharan, T. Allen, Corrosion of ferritic-martensitic steel HT9 in supercritical water, J. Nucl. Mater. 358 (2-3) (2006) 227-234.
  7. K. Shiba, et al., Properties of Low Activation Ferritic Steel F82H IEA Heat. Interim Report of IEA Round-Robin Tests. 1, 1997.
  8. N. Yamanouchi, et al., Accumulation of engineering data for practical use of reduced activation ferritic steel: 8% Cr 2% W 0.2% V 0.04% Ta Fe, J. Nucl. Mater. 191 (1992) 822-826.
  9. R. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371 (1-3) (2007) 37-52.
  10. Y. Chen, Irradiation effects of HT-9 martensitic steel, Nucl. Eng. Technol. 45 (3) (2013) 311-322.
  11. H. Tanigawa, et al., Technical issues related to the development of reduced-activation ferritic/martensitic steels as structural materials for a fusion blanket system, Fusion Eng. Des. 86 (9-11) (2011) 2549-2552.
  12. E. Gaganidze, et al., Development of EUROFER97 database and material property handbook, Fusion Eng. Des. 135 (2018) 9-14.
  13. A. Kimura, et al., Designation of alloy composition of reduced-activation martensitic steel, J. Nucl. Mater. 212 (1994) 690-694.
  14. K.J. Harrelson, S.H. Rou, R.C. Wilcox, Impurity element effects on the toughness of 9Cr-1Mo steel, J. Nucl. Mater. 141 (1986) 508-512.
  15. D. De Meis, E.L. Piccolo, R. Torella, Corrosion Resistance of RAFM Steels in Pressurized Water for Nuclear Fusion Applications, ENEA, 2017.
  16. M. Tillack, et al., The use of water in a fusion power core, Fusion Eng. Des. 91 (2015) 52-59.
  17. V. Belous, et al., Assessment of the corrosion behaviour of structural materials in the water coolant of ITER, J. Nucl. Mater. 258 (1998) 351-356.
  18. C. Harrington, et al., Chemistry and corrosion research and development for the water cooling circuits of European DEMO, Fusion Eng. Des. 146 (2019) 478-481.
  19. C. Cavallini, et al., Investigation of corrosion-erosion phenomena in the primary cooling system of SPIDER, Fusion Eng. Des. 166 (2021) 112271.
  20. J. Yang, S. Wang, J. Wang, X. Tang, Effect of high flow velocity on corrosion behavior of Ni based and Ni-Fe based alloys in supercritical water oxidation environment, J. Supercrit. Fluids 170 (2021) 105126.
  21. K. Fujiwara, K. Yoneda, F. Inada, Effect of dissolved oxygen on flow-accelerated corrosion in neutral and alkaline solutions, EUROCORR 2017 (2017).
  22. Y.-S. Kim, J.-G. Kim, Improvement of corrosion resistance for low carbon steel pipeline in district heating environment using transient oxygen injection method, J. Ind. Eng. Chem. 70 (2019) 169-177.
  23. J.H. Kim, I.S. Kim, H.S. Chung, Flow accelerated corrosion behavior of low alloy steel at elevated temperature, in: Proc. KNS Autumn Meet., KNS, Korea, 2002. Republic of.
  24. R.M. Moreira, et al., Evaluation of flow accelerated corrosion in Typical recovery boiler environments of energy production industries, Mater. Res. 25 (2022) e20210520.
  25. B. Dooley, D. Lister, Flow-accelerated corrosion in steam generating plants, Power Plant Chemistry 20 (4) (2018) 194-244.
  26. [a] S. Hettiarachchi, BWR SCC mitigation experiences with hydrogen water chemistry, in: Proc. 12th Int. Symp. Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, TMS (The Minerals, Metals & Materials Society), Salt Lake City, UT, USA, Aug. 14-18, 2005, 2005.
  27. [b] T.K. Yeh, M.Y. Wang, Water chemistry in the primary coolant circuit of a boiling water reactor during startup operations, Nucl. Sci. Eng. 173 (2) (2013) 163-171.
  28. W.G. Cook, R.P. Olive, Pourbaix diagrams for the iron-water system extended to high-subcritical and low-supercritical conditions, Corrosion Sci. 55 (2012) 326-331.
  29. M. Nakajima, T. Nozawa, H. Tanigawa, Effect of hydrogen on corrosion properties of reduced activation ferritic/martensitic steel, F82H, Fusion Eng. Des. 146 (2019) 1912-1915.
  30. V. Lepingle, et al., Steam oxidation resistance of new 12% Cr steels: comparison with some other ferritic steels, Corrosion Sci. 50 (4) (2008) 1011-1019.
  31. B.A. Pint, J.R. Distefano, I.G. Wright, Oxidation resistance: one barrier to moving beyond Ni-base superalloys, Materials Science and Engineering: A 415 (1-2) (2006) 255-263.
  32. M. Schutze, et al., The role of alloy composition, environment and stresses for the oxidation resistance of modern 9% Cr steels for fossil power stations, Mater. Res. 7 (2004) 111-123.
  33. W. Quadakkers, et al., Steam oxidation of ferritic steels-laboratory test kinetic data, Mater. A. T. High. Temp. 22 (1-2) (2005) 47-60.
  34. C.-H. Lee, et al., Influence of W concentration on the Charpy impact property and corrosion behavior of reduced activation ferritic-martensitic steels for fusion reactor, J. Nucl. Mater. 569 (2022) 153905.
  35. M. Ahn, H.-S. Kwon, H. Lee, Quantitative comparison of the influences of tungsten and molybdenum on the passivity of Fe-29Cr ferritic stainless steels, Corrosion Sci. 40 (2-3) (1998) 307-322.
  36. K. Kim, et al., Electrochemical and stress corrosion properties of duplex stainless steels modified with tungsten addition, Corrosion 54 (11) (1998).
  37. J.Y. Jo, Aqueous Corrosion Characteristics of FeCrW Model Alloys Depending on Water Chemistry Conditions, Pusan National University, 2023. Pusan.
  38. N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge university press, 2006.
  39. S. Uchida, et al., Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics. Relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate, Nucl. Eng. Des. 241 (11) (2011) 4585-4593.
  40. P. Khunphakdee, B. Chalermsinsuwan, Review of flow accelerated corrosion mechanism, numerical analysis, and control measures, Chem. Eng. Res. Des. (2023).
  41. B. Poulson, Predicting and preventing flow accelerated corrosion in nuclear power plant, International Journal of Nuclear Energy (2014) 2014.
  42. Y. Hu, et al., The effect of different turbulent flow on failure behavior in secondary loop of the pressurized water reactor, Nucl. Eng. Des. 368 (2020) 110812.
  43. M. Ma, et al., Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction, Nanoscale Res. Lett. 8 (2013) 1-7.