DOI QR코드

DOI QR Code

Manipulation and diagnosis of femtosecond relativistic electron bunch using terahertz-driven resonators

  • Yang Xu (State Key Laboratory of Advanced Electromagnetic Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Yifang Song (State Key Laboratory of Advanced Electromagnetic Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Cheng-Ying Tsai (State Key Laboratory of Advanced Electromagnetic Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Jian Wang (State Key Laboratory of Advanced Electromagnetic Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Zhengzheng Liu (State Key Laboratory of Advanced Electromagnetic Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Kuanjun Fan (State Key Laboratory of Advanced Electromagnetic Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology) ;
  • Jinfeng Yang (The Institute of Scientific and Industrial Research, Osaka University) ;
  • Oleg Meshkov (Budker Institute of Nuclear Physics)
  • Received : 2024.03.04
  • Accepted : 2024.05.23
  • Published : 2024.10.25

Abstract

Using strong electromagnetic fields generated by lasers to interact with electrons for precise diagnosis and manipulation of electron beams represents a recent focal point in accelerator technology. This approach surpasses the limitations of conventional RF technology, such as low electric field gradients and timing jitters, effectively enhancing the accuracy of ultrafast electron beam diagnostics and manipulations. As demands for precision continue to rise, the precise diagnosis of crucial parameters of ultrafast electron beams remains challenging. This study delves into the electromagnetic behavior of THz-driven devices and proposes an all-optical method utilizing single-cycle THz radiation to compress and characterize a 3 MeV electron beam. Particle tracking simulations demonstrate an astonishing compression effect, reducing the bunch length from 54.0 fs to 4.3 fs, and achieving sub-femtosecond bunch length measurement resolution. Moreover, when combined with an orthogonal THz streak camera, this method shows even greater potential in multi-bunch scenarios.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (NSFC) (12235005 and 12275094) and the National Key Research and Development Program of China (2022YFA1602202).

References

  1. E.M. Mannebach, R. Li, K.A. Duerloo, C. Nyby, P. Zalden, T. Vecchione, F. Ernst, A. H. Reid, T. Chase, X. Shen, S. Weathersby, C. Hast, R. Hettel, R. Coffee, N. Hartmann, A.R. Fry, Y. Yu, L. Cao, T.F. Heinz, E.J. Reed, H.A. Durr, X. Wang, A. M. Lindenberg, Dynamic structural response and deformations of monolayer MoS2 visualized by femtosecond electron diffraction, Nano Lett. 15 (2015) 6889-6895, https://doi.org/10.1021/ACS.NANOLETT.5B02805.
  2. S.P. Weathersby, G. Brown, M. Centurion, T.F. Chase, R. Coffee, J. Corbett, J. P. Eichner, J.C. Frisch, A.R. Fry, M. Guhr, N. Hartmann, C. Hast, R. Hettel, R. K. Jobe, E.N. Jongewaard, J.R. Lewandowski, R.K. Li, A.M. Lindenberg, I. Makasyuk, J.E. May, D. McCormick, M.N. Nguyen, A.H. Reid, X. Shen, K. Sokolowski-Tinten, T. Vecchione, S.L. Vetter, J. Wu, J. Yang, H.A. Durr, X. J. Wang, Mega-electron-volt ultrafast electron diffraction at SLAC national accelerator laboratory, Rev. Sci. Instrum. 86 (2015), https://doi.org/10.1063/1.4926994.
  3. J. Yang, M. Guehr, T. Vecchione, M.S. Robinson, R. Li, N. Hartmann, X. Shen, R. Coffee, J. Corbett, A. Fry, K. Gaffney, T. Gorkhover, C. Hast, K. Jobe, I. Makasyuk, A. Reid, J. Robinson, S. Vetter, F. Wang, S. Weathersby, C. Yoneda, M. Centurion, X. Wang, Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses, Nat. Commun. 7 (1 7) (2016) 1-9, https://doi.org/10.1038/ncomms11232, 2016.
  4. F. Fu, S. Liu, P. Zhu, D. Xiang, J. Zhang, J. Cao, High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun, Rev. Sci. Instrum. 85 (2014) 83701, https://doi.org/10.1063/1.4892135/595991.
  5. P. Zhu, Y. Zhu, Y. Hidaka, L. Wu, J. Cao, H. Berger, J. Geck, R. Kraus, S. Pjerov, Y. Shen, R.I. Tobey, J.P. Hill, X.J. Wang, Femtosecond time-resolved MeV electron diffraction, New J. Phys. 17 (2015), https://doi.org/10.1088/1367-2630/17/6/063004.
  6. A.H. Zewail, 4D ultrafast electron diffraction, crystallography, and microscopy, Annu. Rev. Phys. Chem. 57 (2006) 65-103, https://doi.org/10.1146/ANNUREV.PHYSCHEM.57.032905.104748.
  7. M. Zhang, G. Cao, H. Tian, S. Sun, Z. Li, X. Li, C. Guo, Z. Li, H. Yang, J. Li, Picosecond view of a martensitic transition and nucleation in the shape memory alloy M n50 N i40 S n10 by four-dimensional transmission electron microscopy, Phys. Rev. B 96 (2017) 174203, https://doi.org/10.1103/PHYSREVB.96.174203/FIGURES/4/MEDIUM.
  8. M.T. Hassan, J.S. Baskin, B. Liao, A.H. Zewail, High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics, Nat. Photonics 11 (7 11) (2017) 425-430, https://doi.org/10.1038/nphoton.2017.79, 2017.
  9. O. Zandi, A.E. Sykes, R.D. Cornelius, F.M. Alcorn, B.S. Zerbe, P.M. Duxbury, B. W. Reed, R.M. van der Veen, Transient lensing from a photoemitted electron gas imaged by ultrafast electron microscopy, Nat. Commun. 11 (2020), https://doi.org/10.1038/S41467-020-16746-Z.
  10. H.N. Chapman, A. Barty, M.J. Bogan, S. Boutet, M. Frank, S.P. Hau-Riege, S. Marchesini, B.W. Woods, S. Bajt, W.H. Benner, R.A. London, E. Plonjes, M. Kuhlmann, R. Treusch, S. Dusterer, T. Tschentscher, J.R. Schneider, E. Spiller, T. Moller, C. Bostedt, M. Hoener, D.A. Shapiro, K.O. Hodgson, D. Van Der Spoel, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M.M. Seibert, F.R.N.C. Maia, R. W. Lee, A. Szoke, N. Timneanu, J. Hajdu, Femtosecond diffractive imaging with a soft-X-ray free-electron laser, Nat. Phys. 2 (2006) 839-843, https://doi.org/10.1038/nphys461.
  11. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi, T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi, T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X.M. Marechal, T. Masuda, S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono, N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji, T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto, S. Suzuki, S. Takahashi, H. Takebe, K. Takeshita, K. Tamasaku, H. Tanaka, R. Tanaka, T. Tanaka, T. Togashi, K. Togawa, A. Tokuhisa, H. Tomizawa, K. Tono, S. Wu, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake, H. Kitamura, N. Kumagai, A compact X-ray free-electron laser emitting in the sub-angstrom region, Nat. Photonics 6 (2012) 540-544, https://doi.org/10.1038/NPHOTON.2012.141.
  12. M. Yabashi, H. Tanaka, T. Tanaka, H. Tomizawa, T. Togashi, M. Nagasono, T. Ishikawa, J.R. Harries, Y. Hikosaka, A. Hishikawa, K. Nagaya, N. Saito, E. Shigemasa, K. Yamanouchi, K. Ueda, Compact XFEL and AMO sciences: SACLA and SCSS, J. Phys. B Atom. Mol. Opt. Phys. 46 (2013) 164001, https://doi.org/10.1088/0953-4075/46/16/164001.
  13. M. Dal Forno, V. Dolgashev, G. Bowden, C. Clarke, M. Hogan, D. McCormick, A. Novokhatski, B. Spataro, S. Weathersby, S.G. Tantawi, Rf breakdown tests of mm-wave metallic accelerating structures, Phy.Rev. Acce. Beams 19 (2016), https://doi.org/10.1103/PHYSREVACCELBEAMS.19.011301.
  14. E.A. Peralta, K. Soong, R.J. England, E.R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K.J. Leedle, D. Walz, E.B. Sozer, B. Cowan, B. Schwartz, G. Travish, R.L. Byer, Demonstration of electron acceleration in a laser-driven dielectric microstructure, Nature 503 (7474 503) (2013) 91-94, https://doi.org/10.1038/nature12664, 2013.
  15. N.V. Sapra, K.Y. Yang, D. Vercruysse, K.J. Leedle, D.S. Black, R. Joel England, L. Su, R. Trivedi, Y. Miao, O. Solgaard, R.L. Byer, J. Vuckovic, On-chip integrated laser-driven particle accelerator, Science 367 (1979) 79-83, https://doi.org/10.1126/SCIENCE.AAY5734, 2020.
  16. R. Shiloh, J. Illmer, T. Chlouba, P. Yousefi, N. Schonenberger, U. Niedermayer, A. Mittelbach, P. Hommelhoff, Electron phase-space control in photonic chip-based particle acceleration, Nature 597 (2021) 498-502, https://doi.org/10.1038/s41586-021-03812-9.
  17. P. Chen, J.M. Dawson, R.W. Huff, T. Katsouleas, Acceleration of electrons by the interaction of a bunched electron beam with a plasma, Phys. Rev. Lett. 54 (1985) 693-696, https://doi.org/10.1103/PHYSREVLETT.54.693.
  18. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimeter-scale accelerator, Nat. Phys. 2 (10 2) (2006) 696-699, https://doi.org/10.1038/nphys418, 2006.
  19. Z. Wu, A.S. Fisher, J. Goodfellow, M. Fuchs, D. Daranciang, M. Hogan, H. Loos, A. Lindenberg, Intense terahertz pulses from SLAC electron beams using coherent transition radiation, Rev. Sci. Instrum. 84 (2013), https://doi.org/10.1063/1.4790427.
  20. J. Hebling, G. Almasi, I. Kozma, J. Kuhl, Velocity matching by pulse front tilting for large area THz-pulse generation, Opt Express 10 (2002) 1161, https://doi.org/10.1364/OE.10.001161.
  21. E.A. Nanni, W.R. Huang, K.H. Hong, K. Ravi, A. Fallahi, G. Moriena, R.J. Dwayne Miller, F.X. Kartner, Terahertz-driven linear electron acceleration, Nat. Commun. 6 (1 6) (2015) 1-8, https://doi.org/10.1038/ncomms9486, 2015.
  22. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184, https://doi.org/10.1103/PhysRevLett.84.4184.
  23. H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices, Nature (2006) 597-600, https://doi.org/10.1038/nature05343, 2006 444:7119 444.
  24. J. Maxson, D. Cesar, G. Calmasini, A. Ody, P. Musumeci, D. Alesini, Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance, Phys. Rev. Lett. 118 (2017) 154802, https://doi.org/10.1103/PHYSREVLETT.118.154802/FIGURES/4/MEDIUM.
  25. L. Zhao, Z. Wang, C. Lu, R. Wang, C. Hu, P. Wang, J. Qi, T. Jiang, S. Liu, Z. Ma, F. Qi, P. Zhu, Y. Cheng, Z. Shi, Y. Shi, W. Song, X. Zhu, J. Shi, Y. Wang, L. Yan, L. Zhu, D. Xiang, J. Zhang, Terahertz streaking of few-femtosecond relativistic electron beams, Phys. Rev. X (2018) 8, https://doi.org/10.1103/PHYSREVX.8.021061.
  26. R.K. Li, M.C. Hoffmann, E.A. Nanni, S.H. Glenzer, M.E. Kozina, A.M. Lindenberg, B. K. Ofori-Okai, A.H. Reid, X. Shen, S.P. Weathersby, J. Yang, M. Zajac, X.J. Wang, Terahertz-based subfemtosecond metrology of relativistic electron beams, Phy.Rev. Acce. Beams 22 (2019), https://doi.org/10.1103/PHYSREVACCELBEAMS.22.012803.
  27. C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum, All-optical control and metrology of electron pulses, n.d. https://doi.org/10.1126/science.aae0003.
  28. M.A.K. Othman, M.C. Hoffmann, M.E. Kozina, X.J. Wang, R.K. Li, E.A. Nanni, Parallel-plate waveguides for terahertz-driven MeV electron bunch compression, Opt Express 27 (2019) 23791, https://doi.org/10.1364/OE.27.023791.
  29. D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L.E. Zapata, N.H. Matlis, F.X. Kartner, Segmented terahertz electron accelerator and manipulator (STEAM), Nat. Photonics 12 (2018) 336-342, https://doi.org/10.1038/s41566-018-0138-z.
  30. K. Reimann, Table-top sources of ultrashort THz pulses, Rep. Prog. Phys. 70 (2007) 1597-1632, https://doi.org/10.1088/0034-4885/70/10/R02.
  31. C. Vicario, C. Ruchert, C.P. Hauri, High field broadband THz generation in organic materials, J. Mod. Opt. 62 (2015) 1480-1485, https://doi.org/10.1080/09500340.2013.800242.
  32. S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, A. Zholents, Experimental observation of energy modulation in electron beams passing through terahertz dielectric wakefield structures, Phys. Rev. Lett. 108 (2012), https://doi.org/10.1103/PHYSREVLETT.108.144801.
  33. J. Thangaraj, G. Andonian, R. Thurman-Keup, J. Ruan, A.S. Johnson, A. Lumpkin, J. Santucci, T. Maxwell, A. Murokh, M. Ruelas, A. Ovodenko, Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator, Rev. Sci. Instrum. 83 (2012), https://doi.org/10.1063/1.3698388.
  34. M. Litos, E. Adli, W. An, C.I. Clarke, C.E. Clayton, S. Corde, J.P. Delahaye, R. J. England, A.S. Fisher, J. Frederico, S. Gessner, S.Z. Green, M.J. Hogan, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, P. Muggli, N. Vafaei-Najafabadi, D. Walz, G. White, Z. Wu, V. Yakimenko, G. Yocky, High-efficiency acceleration of an electron beam in a plasma wakefield accelerator, Nature 515 (2014) 92-95, https://doi.org/10.1038/NATURE13882.
  35. C. Bracco, L.D. Amorim, R. Assmann, F. Batsch, R. Bingham, G. Burt, B. Buttenschon, A. Butterworth, A. Caldwell, S. Chattopadhyay, S. Cipiccia, L. C. Deacon, S. Doebert, U. Dorda, E. Feldbaumer, R.A. Fonseca, V. Fedossev, B. Goddard, J. Grebenyuk, O. Grulke, E. Gschwendtner, J. Hansen, C. Hessler, W. Hofle, J. Holloway, D. Jaroszynski, M. Jenkins, L. Jensen, S. Jolly, R. Jones, M. F. Kasim, N. Lopes, K. Lotov, S.R. Mandry, M. Martyanov, M. Meddahi, O. Mete, V. Minakov, J. Moody, P. Muggli, Z. Najmudin, P.A. Norreys, E. Oz, A. Pardons, A. Petrenko, A. Pukhov, K. Rieger, O. Reimann, A.A. Seryi, E. Shaposhnikova, P. Sherwood, L.O. Silva, A. Sosedkin, R. Tarkeshian, R.M.G.M. Trines, F.M. Velotti, J. Vieira, H. Vincke, C. Welsch, M. Wing, G. Xia, AWAKE: a proton-driven plasma wakefield acceleration experiment at cern, Nuclear.Part.Phys.Procee. (2016) 273-275, https://doi.org/10.1016/J.NUCLPHYSBPS.2015.09.022, 175-180.
  36. K.V. Lotov, A.P. Sosedkin, A.V. Petrenko, L.D. Amorim, J. Vieira, R.A. Fonseca, L. O. Silva, E. Gschwendtner, P. Muggli, Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam, Phys. Plasmas 21 (2014), https://doi.org/10.1063/1.4904365.
  37. P. Musumeci, R.K. Li, A. Marinelli, Nonlinear longitudinal space charge oscillations in relativistic electron beams, Phys. Rev. Lett. 106 (2011), https://doi.org/10.1103/PHYSREVLETT.106.184801.
  38. CST Studio Suite, 2021. Darmstadt, Germany, https://www.3d.s.com/products-services/simulia/products/cst-studio-suite/.
  39. J.H. Kang, Q.H. Park, Local enhancement of terahertz waves in structured metals, IEEE Trans Terahertz Sci Technol 6 (2016) 371-381, https://doi.org/10.1109/TTHZ.2016.2549361.
  40. J.-H. Choe, J.-H. Kang, D.-S. Kim, Q.-H. Park, Slot antenna as a bound charge oscillator, Opt Express 20 (2012) 6521, https://doi.org/10.1364/OE.20.006521.
  41. J.H. Kang, D.S. Kim, Q.H. Park, Local capacitor model for plasmonic electric field enhancement, Phys. Rev. Lett. 102 (2009) 093906, https://doi.org/10.1103/PHYSREVLETT.102.093906/FIGURES/6/MEDIUM.
  42. Y. Song, C.Y. Tsai, K. Fan, Y. Xu, J. Yang, Analytical model of the streaking process in a single split-ring resonator for sub-ps electron pulse, Nucl. Instrum. Methods Phys. Res. A (2021) 987, https://doi.org/10.1016/J.NIMA.2020.164861.
  43. Y. Xu, Z. Liu, J. Wang, H. Qi, J. Yang, Y. Song, C.-Y. Tsai, K. Fan, O.I. Meshkov, Towards precise diagnosis time profile of ultrafast electron bunch trains using orthogonal terahertz streak camera, Opt Express 31 (12) (2023) 19777-19793, https://doi.org/10.1364/OE.488132, 19777-19793 31.
  44. Y. Song, J. Yang, J. Wang, J. Urakawa, T. Takatomi, K. Fan, Development of a 1.4-cell RF photocathode gun for single-shot MeV ultrafast electron diffraction devices with femtosecond resolution, Nucl. Instrum. Methods Phys. Res. A (2022) 1031, https://doi.org/10.1016/J.NIMA.2022.166602.
  45. Z. Wang, L. Zhao, Y. Cheng, Z. Ma, F. Qi, T. Jiang, X. Zou, D. Xiang, Movie-mode visualization of terahertz fields inside subwavelength metallic structures using ultrashort relativistic electrons, Appl. Phys. Lett. 120 (2022) 241103, https://doi.org/10.1063/5.0089396/2833740.