DOI QR코드

DOI QR Code

Evaluation of radioactivity and radiological parameters in soil samples in Isparta, Türkiye

  • Mehmet Ertan Kurkcuoglu (Department of Physics, University of Suleyman Demirel) ;
  • Fatih Caglar Kahraman (Graduate School of Natural and Applied Sciences, University of Suleyman Demirel) ;
  • Serdar Dizman (Department of Physics, University of Recep Tayyip Erdogan) ;
  • Gulcin Bilgici Cengiz (Department of Physics, University of Kafkas)
  • 투고 : 2024.02.28
  • 심사 : 2024.05.04
  • 발행 : 2024.10.25

초록

In the city centre of Isparta, located in the southwestern part of Türkiye, indoor radon concentrations and gamma dose rate levels were observed above the world and country averages. For this reason, the determination of the natural radioactivity levels in soil samples of Isparta province is of great interest. In the present study, the activity concentrations of radionuclides (namely 226Ra,232Th, 40K and 137Cs) were investigated in the soil samples collected from 72 different points including the city centre and 12 towns of Isparta by using a gamma spectrometer with a high-purity germanium (HPGe) detector. The activity concentrations of 226Ra,232Th, 40K and 137Cs radionuclides in the samples were found in the range of 4.08 ± 0.39-69.84 ± 1.43 Bqkg-1, 2.63 ± 0.28-65.66 ± 1.41 Bqkg-1, 44.48 ± 3.17-452.38 ± 9.65 Bqkg-1 and 0.28 ± 0.18-19.10 ± 0.61 Bqkg-1 respectively. The averages of all the measurements were determined as 15.69 ± 0.72 Bqkg-1 for 226Ra, 15.40 ± 0.78 Bqkg-1 for 232Th, 210.60 ± 6.22 Bqkg-1 for 40K and 3.44 ± 0.31 Bqkg-1 for 137Cs. Although these values were below the country and world averages, it was revealed that the 226Ra and 232Th activity concentrations in the city centre exceeded the national and world averages. In addition, radiological risk maps of the analysed radionuclides were produced for the first time, covering all towns within the Isparta province. To evaluate the radiological hazards resulting from natural radionuclides, external hazard index (Hex), absorbed dose rate (D), annual effective dose equivalent (AEDE), male and female lifetime cancer risk (LCR) values were also calculated. The outcomes of this study revealed that all the radiological parameter averages for Isparta were lower than the world and country averages but the calculation results for the city centre displayed the opposite of this situation except for the external hazard index.

키워드

과제정보

This study is a part of Fatih Caglar Kahraman's PhD thesis. The authors thank the staff of the Ministry of Agriculture and Forestry for their assistance in soil sample collection.

참고문헌

  1. UNSCEAR, Sources, Effects and Risks of Ionizing Radiation, in: Report of the General Assembly with Scientific Annexes, vol. 1, 2000. United Nations, New York, https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf. (Accessed 1 June 2023).
  2. A. Sroor, S.M. El-Bahi, F. Ahmed, A.S. Abdel-Haleem, Natural radioactivity and radon exhalation rate of soil in southern Egypt, Appl. Radiat. Isot. 55 (6) (2001) 873-879, https://doi.org/10.1016/S0969-8043(01)00123-3.
  3. M. Degerlier, N. Celebi, Indoor radon concentrations in Adana, Turkey, Radiat. Protect. Dosim. 131 (2) (2008) 259-264, https://doi.org/10.1093/rpd/ncn157.
  4. G. Shanthi, J. Thampi Thanka Kumaran, G. Allen Gnana Raj, C.G. Maniyan, Measurement of activity concentration of natural radionuclides for the assessment of radiological indices, Radiat. Protect. Dosim. 141 (1) (2010) 90-96, https://doi.org/10.1093/rpd/ncq142.
  5. E.O. Agbalagba, G.O. Avwiri, Y.E. Chad-Umoreh, γ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria, J. Environ. Radioact. 109 (2012) 64-70, https://doi.org/10.1016/j.jenvrad.2011.10.012.
  6. O. Wang, J. Song, X. Li, H. Yuan, N. Li, L. Cao, Environmental radionuclides in a coastal wetland of the southern Laizhou Bay, China, Mar. Pollut. Bull. 97 (1-2) (2015) 506-511, https://doi.org/10.1016/j.marpolbul.2015.05.035.
  7. V.A. Pulhani, S. Dafauti, A.G. Hegde, R.M. Sharma, U.C. Mishra, Uptake and distribution of natural radioactivity in wheat plants from soil, J. Environ. Radioact. 79 (3) (2005) 331-346, https://doi.org/10.1016/j.jenvrad.2004.08.007.
  8. A. Kurnaz, B. Kucukomeroglu, R. Keser, N.T. Okumusoglu, F. Korkmaz, G. Karahan, U. Cevik, Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey), Appl. Radiat. Isot. 65 (11) (2007) 1281-1289, https://doi.org/10.1016/j.apradiso.2007.06.001.
  9. N. Celik, N. Cevik, A. Celik, B. Kucukomeroglu, Determination of indoor radon and soil radioactivity levels in Giresun, Turkey, J. Environ. Radioact. 99 (8) (2008) 1349-1354, https://doi.org/10.1016/j.jenvrad.2008.04.010.
  10. M. Degerlier, G. Karahan, G. Ozger, Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey, J. Environ. Radioact. 99 (7) (2008) 1018-1025, https://doi.org/10.1016/j.jenvrad.2007.12.015.
  11. G. Karahan, Risk assessment of baseline outdoor gamma dose rate levels study of natural radiation sources in Bursa, Turkey, Radiation Protection Dosimetry Advance 142 (2-4) (2010) 324-331, https://doi.org/10.1093/rpd/ncq217.
  12. E.O. Agbalagba, R.A. Onoja, Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria, J. Environ. Radioact. 102 (7) (2011) 667-671, https://doi.org/10.1016/j.jenvrad.2011.03.002.
  13. E. Kapdan, A. Varinlioglu, G. Karahan, Radioactivity levels and health risks due to radionuclides in the soil of Yalova, Northwestern Turkey, Int. J. Environ. Res. 5 (4) (2011) 837-846. https://scholar.google.com. (Accessed 5 November 2023).
  14. R. Ravisankar, A. Chandrasekaran, P. Vijayagopal, B. Venkatraman, G. Senthilkumar, P. Eswaran, A. Rajalakshmi, Natural radioactivity in soil samples of Yelagiri Hills, Tamil Nadu, India and the associated radiation hazards, Radiat. Phys. Chem. 81 (12) (2012) 1789-1795, https://doi.org/10.1016/j.radphyschem.2012.07.003.
  15. Z. Korkulu, N. Ozkan, Determination of natural radioactivity levels of beach sand samples in the black sea coast of Kocaeli (Turkey), Radiat. Phys. Chem. 88 (2013) 27-31, https://doi.org/10.1016/j.radphyschem.2013.03.022.
  16. M. Rafique, S.U. Rahman, M. Basharat, W. Aziz, I. Ahmad, K.A. Lone, K. Ahmad, Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley, Journal of Radiation Research and Applied Sciences 7 (1) (2014) 29-35, https://doi.org/10.1016/j.jrras.2013.11.005.
  17. A.D. Bajoga, N. Alazemi, P.H. Regan, D.A. Bradley, Radioactive investigation of NORM samples from Southern Kuwait soil using high-resolution gamma-ray spectroscopy, Radiat. Phys. Chem. 116 (2015) 305-311, https://doi.org/10.1016/j.radphyschem.2015.01.041.
  18. G. Alzubaidi, F.B.S. Hamid, I. Abdul Rahman, Assessment of natural radioactivity levels and radiation hazards in agricultural and Virgin soil in the state of Kedah, north of Malaysia, Sci. World J. (2016) 1-9, https://doi.org/10.1155/2016/6178103.
  19. S. Dizman, F.K. Gorur, R. Keser, Determination of radioactivity levels of soil samples and the excess of lifetime cancer risk in Rize province, Turkey, International Journal of Radiation Research 14 (3) (2016) 237-244, https://doi.org/10.18869/acadpub.ijrr.14.3.237.
  20. M. Karatasli, S. Turhan, A. Varinlioglu, Z. Yegingil, Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples, Environ Earth 75 (5) (2016) 424, https://doi.org/10.1007/s12665-016-5414-y.
  21. N. Zaim, H. Atlas, Assessment of radioactivity levels and radiation hazards using gamma spectrometry in soil samples of Edirne, Turkey, J. Radioanal. Nucl. Chem. 310 (3) (2016) 959-967, https://doi.org/10.1007/s10967-016-4908-0.
  22. H. Al-Sulaiti, K.S. Al Mugren, D.A. Bradley, P.H. Regan, T. Santawamaitre, D. Malain, A. Habib, T. Nasir, T. Alkhomashi, N. Al-Dahan, M. Al-Dosari, S. Bukhari, An assessment of the natural radioactivity distribution and radiation hazard in soil samples from Qatar using high-resolution gamma-ray spectrometry, Radiat. Phys. Chem. 140 (2017) 132-136, https://doi.org/10.1016/j.radphyschem.2017.05.001.
  23. G. Bilgici Cengiz, E. Oztanriover, Analysis of natural radioactivity levels in soil samples and dose assessment for Digor district, Kars, Turkey, Caucasian Journal of Science 5 (1) (2018) 30-39. https://dergipark.org.tr/en/pub/cjo/issue/38939/424149. (Accessed 1 March 2023).
  24. I. Yigitoglu, E. Eser, B. Cetin, S. Kilicaslan, F. Oner, I. Akkurt, G. Gursoy, S. Yamcicier, H. Koc, Determination of natural radioactivity levels in soil and travertine of the region of Tokat and Sivas, Turkey, Arabian J. Geosci. 11 (6) (2018), https://doi.org/10.1007/s12517-018-3457-y.
  25. R. Pourimani, S.M. Mortazavi Shahroudi, Radiological assessment of the artificial and natural radionuclide concentrations of wheat and Barley samples in Karbala, Iraq. Iranian Journal of Medical Physics 15 (2) (2018) 126-131, https://doi.org/10.22038/ijmp.2017.24190.1238.
  26. S. Dizman, F.K. Gorur, R. Keser, O. Gorur, The assessment of radioactivity and radiological hazards in soils of Bolu province, Turkey, Environ. Forensics 20 (3) (2019) 211-218, https://doi.org/10.1080/15275922.2019.1629129.
  27. R.A. Filgueiras, A.X. Silvaa, F.C.A. Ribeirob, D.C. Lauriab, E.P. Viglio, Baseline, mapping and dose estimation of natural radioactivity in soils of the Brazilian state of Alagoas, Radiat. Phys. Chem. 167 (2020) 108332, https://doi.org/10.1016/j.radphyschem.2019.05.022.
  28. S. Ozden, Determining the Level of Radioactivity in Kirklareli and its Surrounding and Evaluation of Human Health and Environmental Pollution, Kirklareli University. Graduate School of Natural and Applied Sciences. Kirklareli, 2020. Ph. D. Thesis in Turkish), https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp. (Accessed 18 February 2023).
  29. J. Yang, Y. Sun, Natural radioactivity and dose assessment in surface soil from Guangdong, a high background radiation province in China, Journal of Radiation Research and Applied Sciences 15 (1) (2022) 145-151, https://doi.org/10.1016/j.jrras.2022.01.019.
  30. F. Lolila, M.S. Mazunga, Measurements of natural radioactivity and evaluation of radiation hazard indices in soils around the Manyoni uranium deposit in Tanzania, Journal of Radiation Research and Applied Sciences 16 (1) (2023) 100524, https://doi.org/10.1016/j.jrras.2023.100524.
  31. G.V.V. Satyanarayana, N.S. Sivakumar, D. VidyaSagar, N. Murali, A.D.P. Rao, P. L. Narayana, Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Visakhapatnam, Andhra Pradesh, India, J. Indian Chem. Soc. 100 (1) (2023) 100856, https://doi.org/10.1016/j.jics.2022.100856.
  32. TENMAK, Turkish Energy, Nuclear and Mineral Research Agency, Environmental Radioactivity Monitoring in Turkey, 2009, 2010. https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/009/42009936.pdf. (Accessed 10 March 2023).
  33. M. Gormus, M. Ozkul, Stratigraphy of the area between Gonen-Atabey (Isparta) and Aglasun (Burdur), J. Natural and Appl. Sci. of Suleyman Demirel University. 1 (1995) 43-64. https://www.researchgate.net/publication/287596511. (Accessed 5 December 2023).
  34. Z. Kanbur, M. Gormus, S. Kanbur, Use of Refraction-Microtremor Technique (ReMi) of shallow S-wave truncation of the northern edge of Isparta urban area, Journal of the Earth Sciences Application and Research Centre of Hacettepe University 29 (2) (2008) 77-86. https://dergipark.org.tr/en/download/article-file/145613. (Accessed 4 December 2023).
  35. N.A. Uyanik, I. Akkurt, Determination of natural radioactivity in Isparta-Cunur Hill covered with Alkaline volcanics, Afyon Kocatepe University. Journal of Science and Engineering Sciences 9 (2) (2009) 35-42. https://scholar.google.com.(Accessed 27 June 2023).
  36. u.Y. Kalyoncuoglu, N.C. Anadolu, A. Baykul, Y. Erek, Radioactivity level of the surface soil of Isparta city centre. Suleyman Demirel University, Journal of the Institute of Science and Technology 14 (1) (2010) 111-119, https://doi.org/10.19113/sdufbed.22906.
  37. N.A. Uyanik, O. Uyanik, I. Akkurt, Micro-zoning of the natural radioactivity levels and Seismic Velocities of potential Residential areas in volcanic fields: the Case of Isparta (Turkey), J. Appl. Geophys. 98 (2013) 191-204, https://doi.org/10.1016/j.jappgeo.2013.08.020.
  38. U.Y. Kalyoncuoglu, In situ gamma source radioactivity measurement in Isparta plain, Turkey, Environ. Earth Sci. 73 (7) (2015) 3159-3175, https://doi.org/10.1007/s12665-014-3610-1.
  39. O. Coban, M.N. Dolmaz, E. Erbek-Kiran, O. Elitok, Investigation of Natural Radioactivity Characteristics of Rocks in Golcuk/Isparta and its Vicinity European Journal of Science and Technology, vol. 40, 2022, pp. 156-160, https://doi.org/10.31590/ejosat.1168183.
  40. O. Coban, Investigation of Radioactivity Properties of Rocks Occurring in the Vicinity of Golcuk/Isparta, Suleyman Demirel University. Graduate School of Natural and Applied Sciences. Isparta, 2023. M.Sc. Thesis in Turkish), https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp. (Accessed 4 May 2023).
  41. M.E. Kurkcuoglu, A. Cine, Gamma ambient dose equivalent measurements for Schools in Isparta city center, Suleyman Demirel University. Journal of Natural and Applied Sciences 21 (2) (2017) 549-553. https://scholar.google.com. (Accessed 19 November 2023).
  42. A. Cine, Investigation of Annual Indoor Radon Levels of the Schools in Isparta City Center, Suleyman Demirel University. Graduate School of Natural and Applied Sciences. Isparta, 2017. M.Sc. Thesis in Turkish), https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp. (Accessed 5 April 2023).
  43. M.E. Kurkcuoglu, Indoor radon in Isparta, 20-22 April 2018, in: 4th International Conference on Theoretical and Experimental Studies in Nuclear Applications and Technology, Akdeniz University, Antalya, 2018, p. 32. Turkiye. Absract Book.
  44. WEB 1, Isparta provincial Directorate of Culture and Tourism. https://isparta.ktb.gov.tr/TR-71025/iklim.html, 2023. (Accessed 1 March 2023).
  45. WEB 2, https://www.nufusu.com/il/isparta-nufusu Accessed date: 19 March 2023.
  46. S. Sari, S. Dizman, Investigation of radioactivity and radiological effects in soil samples taken from Ovit Dagbasi Lake, El-Cezeri Journal of Science and Engineering 7 (3) (2020) 1122-1130, https://doi.org/10.31202/ecjse.735215.
  47. S. Dizman, T. Akdemir, C.M. Yesilkanat, V. Nevruzoglu, E. Bal, R. Keser, Radiometric mapping and radiation dose assessments in sediments from Savsat Black Lake, Turkey, J. Radioanal. Nucl. Chem. 331 (6) (2022) 2533-2544, https://doi.org/10.1007/s10967-022-08335-9.
  48. S. Dizman, T. Akdemir, C.M. Yes,ilkanat, V. Nevruzoglu, E. Bal, R. Keser, Investigation and mapping of natural and artificial radioactivity in sediment samples from Borcka Black Lake, Artvin-Turkey, Int. J. Environ. Anal. Chem. (2022), https://doi.org/10.1080/03067319.2022.2060084.
  49. WEB 3, Statistical package for social sciences. https://sdunet.sdu.edu.tr/Kokpit/LisansliYazilimlar, 2023. (Accessed 21 September 2023).
  50. O.S. Ajayi, C.G. Dike, Radiological hazard assessment of natural radionuclides in soils of some oil-producing areas in Nigeria, Environ. Forensics 17 (3) (2016) 253-262, https://doi.org/10.1080/15275922.2016.1177756.
  51. F.O. Ugbede, O.D. Osahon, A.F. Akpolile, Natural radioactivity levels of 238U, 232Th and 40K and radiological risk assessment in paddy soil of Ezillo rice fields in Ebonyi State, Nigeria, Environ. Forensics 23 (1-2) (2021) 32-46, https://doi.org/10.1080/15275922.2021.1892881.
  52. EC (European Commission), Radiological protection principles concerning the natural radioactivity of building materials, Radiat. Prot. 112 (1999). https://energy.ec.europa.eu/system/files/2014-11/112_0.pdf. (Accessed 1 February 2023).
  53. S.B. Ibikunle, Assessment of natural radioactivity in mango, the influence of soil radioactivity, its radiation hazard indices and the overall excess lifetime cancer risk, International Journal of Radiation Research 20 (2) (2022) 483-489, https://doi.org/10.52547/ijrr.20.2.33.
  54. R.J. Dosh, A.K. Hasan, A.A. Abojassim, Estimation of natural radioactivity in soil of primary schools at old city in Najaf, Arab Journal of Nuclear Sciences and Applications 56 (1) (2023) 117-125, 10.21608/AJNSA.2022.142080.1594.
  55. ICRP, International Commission on Radiological Protection, Recommendations of the international commission on radiological protection. https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103. (Accessed 21 June 2023).
  56. WEB 4, Turkish Statistical Institute, 2022. https://data.tuik.gov.tr/Bulten/Index?p=Dunya-Nufus-Gunu-2022-45552. (Accessed 29 November 2023).
  57. J. Beretka, P.J. Mathew, Natural radioactivity of Australian building materials, industrial wastes and by-products, Health Phys. 48 (1) (1985) 87-95, https://doi.org/10.1097/00004032-198501000-00007.
  58. P. Mishra, C.M. Pandey, U. Singh, A. Gupta, C. Sahu, A. Keshri, Descriptive statistics and normality tests for statistical data, Ann. Card Anaesth. 22 (2019) 67-72, https://doi.org/10.4103/aca.ACA_157_18.
  59. D. Machin, M.J. Campbell, S.J. Walters, Medical Statistics: a Textbook for the Health Sciences, fourth ed., John Wiley and Sons, Ltd, 2007. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. ISBN: 978-0-470-02519-2.
  60. WEB 5, SURFER-8, Golden software. https://surfer.software.informer.com/8.0/, 2023. (Accessed 29 March 2023).