DOI QR코드

DOI QR Code

On Some Sums at the a-points of Derivatives of the Riemann Zeta-Function

  • Kamel Mazhouda (University of Sousse, Higher Institute of Applied Sciences and Technology) ;
  • Tomokazu Onozuka (Multiple Zeta Research Center, Kyushu University)
  • Received : 2023.09.30
  • Accepted : 2023.06.12
  • Published : 2024.09.30

Abstract

Let ζ(k)(s) be the k-th derivative of the Riemann zeta function and a be a complex number. The solutions of ζ(k)(s) = a are called a-points. In this paper, we give an asymptotic formula for the sum $$\sum_{1<{\gamma}_a^{(k)}, where j and k are non-negative integers and ρ(k)a denotes an a-point of the k-th derivative ζ(k)(s) and γ(k)a = Im(ρ(k)a).

Keywords

Acknowledgement

The authors thank the anonymous referee for his careful reading of the manuscript and constructive suggestions which improved the paper.

References

  1. H. Bohr, E. Landau, J. E. Littlewood, Sur la fonction ζ(s) dans le voisinage de la droite σ = ½, Bull. de l'Acad. royale de Belgique, (1913), 3-35. 
  2. J. B. Conrey, A. Ghosh, Zeros of derivatives of the Riemann zeta-function near the critical line, in: Analytic Number Theory, Allerton Park, IL, 1989, in: Progr. Math., vol. 85, Birkhauser Boston, Boston, MA, (1990), 95-110. 
  3. A. Fujii, On the Distribution of Values of Derivative of the Riemann Zeta Function at Its Zeros. I, Proc. Steklov Inst. Math., 276(2012), 51-76. 
  4. R. Garunkstis and J. Steuding, On the roots of the equation ζ(s) = a, Abh. Math. Semin. Univ. Hambg., 84(2014), 1-15. 
  5. D. A. Kaptan, Y. Karabulut and C. Yildirim, Some Mean Value Theorems for the Riemann Zeta-Function and Dirichlet L-Functions, Comment. Math. Univ. St. Pauli no. 1-2, 60(2011), 83-87. 
  6. Y. Karabulut, Some mean value problems concerning the Riemann zeta function, M.Sc. Thesis, Bogazici University, (2009). 
  7. Y. Karabulut and Y. Yildirim, On some averages at the zeros of the derivatives of the Riemann zeta-function, J. Number. Theory., 131(2011), 1939-1961. 
  8. N. Levinson, Almost all roots of ζ(s) = a are arbitrarily close to σ = 1/2, Proc. Natl. Acad. Sci. USA, 72(1975), 1322-1324. 
  9. T. Onozuka, On the a-points of the derivatives of the Riemann zeta, Eur. J. Math., 3(1)(2017), 53-76. 
  10. A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori 1989, E. Bombieri et al. (eds.), Universit'a di Salerno(1992), 367-385. 
  11. J. Steuding, One hundred years uniform distribution modulo one and recent apprications to Riemann's zeta function, Topics in Math. Analysis and Applications 94, (2014), 659-698. 
  12. J. Steuding, Value-distribution of L-functions, Lecture Notes in Mathematics 1877, Springer, 2007, 126-127. 
  13. E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed, revised by D. R. Heath-Brown, Oxford University Press, Oxford, 1986. 
  14. S. M. Voronin, The distribution of the non-zero values of the Riemann zeta-function, Izv. Akad. Nauk Inst. Steklov, 128(1972), 131-150.