Acknowledgement
The authors thank the anonymous referee for his careful reading of the manuscript and constructive suggestions which improved the paper.
References
- H. Bohr, E. Landau, J. E. Littlewood, Sur la fonction ζ(s) dans le voisinage de la droite σ = ½, Bull. de l'Acad. royale de Belgique, (1913), 3-35.
- J. B. Conrey, A. Ghosh, Zeros of derivatives of the Riemann zeta-function near the critical line, in: Analytic Number Theory, Allerton Park, IL, 1989, in: Progr. Math., vol. 85, Birkhauser Boston, Boston, MA, (1990), 95-110.
- A. Fujii, On the Distribution of Values of Derivative of the Riemann Zeta Function at Its Zeros. I, Proc. Steklov Inst. Math., 276(2012), 51-76.
- R. Garunkstis and J. Steuding, On the roots of the equation ζ(s) = a, Abh. Math. Semin. Univ. Hambg., 84(2014), 1-15.
- D. A. Kaptan, Y. Karabulut and C. Yildirim, Some Mean Value Theorems for the Riemann Zeta-Function and Dirichlet L-Functions, Comment. Math. Univ. St. Pauli no. 1-2, 60(2011), 83-87.
- Y. Karabulut, Some mean value problems concerning the Riemann zeta function, M.Sc. Thesis, Bogazici University, (2009).
- Y. Karabulut and Y. Yildirim, On some averages at the zeros of the derivatives of the Riemann zeta-function, J. Number. Theory., 131(2011), 1939-1961.
- N. Levinson, Almost all roots of ζ(s) = a are arbitrarily close to σ = 1/2, Proc. Natl. Acad. Sci. USA, 72(1975), 1322-1324.
- T. Onozuka, On the a-points of the derivatives of the Riemann zeta, Eur. J. Math., 3(1)(2017), 53-76.
- A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori 1989, E. Bombieri et al. (eds.), Universit'a di Salerno(1992), 367-385.
- J. Steuding, One hundred years uniform distribution modulo one and recent apprications to Riemann's zeta function, Topics in Math. Analysis and Applications 94, (2014), 659-698.
- J. Steuding, Value-distribution of L-functions, Lecture Notes in Mathematics 1877, Springer, 2007, 126-127.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed, revised by D. R. Heath-Brown, Oxford University Press, Oxford, 1986.
- S. M. Voronin, The distribution of the non-zero values of the Riemann zeta-function, Izv. Akad. Nauk Inst. Steklov, 128(1972), 131-150.