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Abstract. Let ζ(k)(s) be the k-th derivative of the Riemann zeta function and a be a
complex number. The solutions of ζ(k)(s) = a are called a-points. In this paper, we give
an asymptotic formula for the sum∑

1<γ
(k)
a <T

ζ(j)
(
ρ(k)a

)
as T −→ ∞,

where j and k are non-negative integers and ρ
(k)
a denotes an a-point of the k-th derivative

ζ(k)(s) and γ
(k)
a = Im(ρ

(k)
a ).

1. Introduction

Let ζ(s) be the Riemann zeta function, s = σ + it be a complex variable and a
be a complex number. The zeros of ζ(s)−a, which are denoted by ρa = βa+iγa, are
called a-points of ζ(s). First, we note that there is an a-point near any trivial zero
s = −2n for sufficiently large n and apart from these a-points, there are only finitely
many other a-points in the half-plane σ ≤ 0 (see [4]). The a-points with βa ≤ 0
are said to be trivial. All other a-points lie in a strip 0 < σ < A, where A depends
on a, and are called the nontrivial a-points. These points satisfy a Riemann-von
Mangoldt type formula, namely

(1.1) Na(T ) =
∑

0<γa<T ; βa>0

1 =
T

2π
log

T

2πcae
+O(log T ),
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where

ca =

{
2 if a = 1,
1 otherwise.

This is the well-known Riemann-von Mangoldt formula when a = 0, which Bohr,
Landau and Littlewood [1] generalized for all a ∈ C. We observe that these asymp-
totics are essentially independent of a, that is,

Na(T ) ∼ N(T ), T → ∞,

where N(T ) = N0(T ) denotes the number of nontrivial zeros ρ = β + iγ satisfying
0 < γ < T . Levinson [8] showed that all but O(N(T )/ log log T ) of the a-points

with imaginary part in T < t < 2T lie in
∣∣Re(s)− 1

2

∣∣ < (log log T )2

log T . So the a-points

are clustered around the line Re(s) = 1
2 .

In [2], Conrey and Ghosh suggested the problem of estimating the average∑
0<γ

(k)
0 ≤T

ζ(j)(ρ
(k)
0 ) for non-negative integers j and k, where ρ

(k)
0 = β

(k)
0 + iγ

(k)
0

denote a zero of the k-th derivative ζ(k)(s). One of the first result on this topic was
given by Fujii [3]. He gave an asymptotic formula of the sum

∑
0<γ0≤T ζ ′(ρ0)X

ρ0

for a rational number X > 0. The k = 0 case was treated by Kaptan, Karabulut
and Yildirim in [5]. Garunkštis and Steuding in [4] gave a generalization of Fujii’s
asymptotic formula with X = 1 that if T −→ ∞, we have

∑
ρa; nontrivial

0<γa≤T

ζ ′(ρa) =

(
1

2
− a

)
T

2π
log2

(
T

2π

)
+ (C0 − 1 + 2a)

T

2π
log

(
T

2π

)

+ (1− C0 − C2
0 + 3C1 − 2a)

T

2π
+ E(T ),(1.2)

In fact, in the proof of (1.2) Garunkštis and Steuding used the following formula
established and corrected by Fujii in [3]

∑
0<γ≤T

ζ′(ρ) =
T

4π
log2

(
T

2π

)
+ (C0 − 1)

T

2π
log

(
T

2π

)
+ (1− C0 − C2

0 + 3C1)
T

2π
+O

(
Te−C

√
log T

)
,

where the summation is over all nontrivial zeros ρ = β + iγ of ζ(s).
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where Cn are the Stieltjes constants and

(1.3) E(T ) =

 O
(
T

1
2+ϵ
)

under the Riemann hypothesis,

O
(
Te−C

√
log T

)
unconditionally,

for any ϵ > 0 and some constant C. Using formula (1.2), they concluded that
the main term describes how the values ζ(1/2 + it) approach the value a in the
complex plane on average. In [4], Garunkštis and Steuding also proved that the
set {(ζ(1/2 + it), ζ ′(1/2 + it)) | t ∈ R} is not dense in C2. This result tells us a
value distribution on the critical line. Note that Voronin [14] proved that the set
{(ζ(σ + it), ζ ′(σ + it), . . . , ζ(n−1)(σ + it)) | t ∈ R} is dense in Cn for all positive
integers n and every fixed σ ∈ (1/2, 1).

Recently, Karabulut and Yildirim in [7] studied Conrey and Ghosh’s average
and proved that for fixed j, k ∈ Z≥0 and large T , we have

(1.4)
∑

0<γ
(k)
0 ≤T

ζ(j)
(
ρ
(k)
0

)
= (−1)j (δj,0 +B(j, k))

T

2π
(log T )

j+1
+Oj,k

(
T logj T

)
,

where δj,0 = 1 if j = 0 and 0 otherwise,

(1.5) B(j, k) := −k + 1

j + 1
− j!

k∑
r=1

e−zr

zj+1
r

Pj(zr) + j!

k∑
r=1

1

zj+1
r

,

the sum over r being void in the case k = 0 and zr (r = 1, ..., k) being the zeros of

Pk(z) =
∑k

j=0 z
j/j!.

Let ρ
(k)
a = β

(k)
a + iγ

(k)
a denote an a-point of ζ(k)(s). Similar to the a-points of

ζ(s), there is an a-point of ζ(k)(s) near any trivial zero s = −2n for sufficiently large
n and apart from these a-points, there are only finitely many other a-points in the
half-plane σ ≤ C for any C < 0 (see Lemma 2.3)

In this paper, we give an asymptotic formula for the sum∑
1<γ

(k)
a <T

ζ(j)
(
ρ(k)a

)
.

The basic idea of the proof is to interpret the sum of ζ(j)(ρ
(k)
a ) as a sum of residues.

By Cauchy’s theorem, we have∑
1<γ

(k)
a <T

f(ρ(k)a ) =
1

2πi

∫
R

f(s)
ζ(k+1)(s)

ζ(k)(s)− a
ds,

The Stieltjes constants are given by the Laurent series expansion of ζ(s) at s = 1,

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n
Cn

n!
(s− 1)n.

For example, C0 = limN→+∞

(∑N
n=1

1
n
− logN

)
.
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where f(s) is ζ(j)(s) and R is the rectangle joining the points b+ i, b+ iT, −b′+ iT
and −b′ + i with some constants b, b′ > 0.

Our main result is stated in the following.

Theorem 1.1. Let j and k be non-negative integers and a be a complex number.
For sufficiently large T , we have∑

1<γ
(k)
a <T

ζ(j)
(
ρ(k)a

)
= (−1)j (δj,0 + aδk,0 +B(j, k))

T

2π
(log T )

j+1

+Oj,k

(
T (log T )j

)
.(1.6)

Here and in the sequel, the implicit constant in the error terms may depend on a.

Remark. By Theorem 1.1, we can deduce the average value of ζ(j)(ρ
(k)
a ), over the

a-points ρ
(k)
a of ζ(k)(s) with 1 < Im(ρ

(k)
a ) < T , i.e.,

1

Nk(a, T )

∑
1<γ

(k)
a <T

ζ(j)(ρ(k)a ),

where Nk(a, T ) is the number of terms in the above sum. Because of the asymptotic
formula Nk(a, T ) ∼ (T/2π) log T (see [9]), the average is

(−1)j (δj,0 + aδk,0 +B(j, k)) (log T )
j
.

So this tells us about the size of ζ(j)(s) at certain points (namely the a-points of
ζ(k)(s)).

2. Preliminary Lemmas and Equations

In this section, we prepare some lemmas and equations to prove Theorem 1.1.
Let k be a positive integer. We start with some results (see [9]) about the a-points of
k-th derivative of the Riemann zeta function (see also [13]). For c > 1, the following
equation

ζ(k)(1− s) = (−1)k2(2π)−sΓ(s)(log s)k cos(πs/2)ζ(s)

(
1 +O

(
1

| log s|

))
(2.1)

holds in the region {s ∈ C; σ > c, |t| ≥ 1}. Equation (2.1) (see [9, Theorem 2.2])
yields an a-point free region for ζ(k)(s), that is, there exist real numbers E1k(a) ≤ 0
and E2k(a) ≥ 1 such that ζ(k)(s) − a ̸= 0 for {s ∈ C; σ ≤ E1k(a), |t| ≥ 1} and
{s ∈ C; σ ≥ E2k(a)}. Moreover, in [9, Theorem 2.3] the second author proved
that there exists N = Nk(a) ∈ N such that ζ(k)(s) = a has just one root in
Cn := {s ∈ C; −2n− 1 < σ < −2n+ 1, |t| < 1} for each integer n ≥ N .
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Let us recall that ζ(k)(s) = ζ(k)(s), then if a /∈ R, there exist infinitely many
a-points, or infinitely many a-points, of ζ(k)(s) in {s ∈ C; 0 < t < 1}.

In the following lemma, we prove that equation (2.1) yields another a-point free
region for ζ(k)(s).

Lemma 2.2. Let k be a non-negative integer. For any real number C < 0, there
exists a constant Tk,C > 0 such that there are no a-points of ζ(k)(s) in {s ∈ C; σ ≤
C, |t| ≥ Tk,C}.
Proof. By Stirling’s formula, for |t| > 1 and fixed σ ≥ 1− C, we have

|2(2π)−sΓ(s)(log s)k cos(πs/2)| ≍ |t|σ−1/2| log(1 + |t|)|k.

Moreover, one has

|ζ(s)| ≍ 1

for fixed σ ≥ 1− C. Using the last estimates and (2.1), we get

|ζ(k)(1− s)| ≍ |t|σ−1/2| log(1 + |t|)|k

for |t| > 1 and fixed σ ≥ 1− C. Hence, there exists a constant Tk,C > 0 such that
|ζ(k)(s)| > |a| holds for all E1k(a) ≤ σ ≤ C and |t| ≥ Tk,C . 2

From Lemma 2.2, we deduce easily the following lemma.

Lemma 2.3. Let k be a non-negative integer. For any real number C < 0, there
are finitely many a-points of ζ(k)(s) in

{s ∈ C; σ ≤ C} \

 ⋃
n≥Nk(a)

Cn

 .

For a positive integer k and a complex number a, we have (see [9, Theorem 1.1])

(2.2) Nk(a, T ) :=
∑

1<γ
(k)
a <T

1 =


T

2π
log

T

2π
− T

2π
+O(log T ) if a ̸= 0

T

2π
log

T

4π
− T

2π
+O(log T ) if a = 0

and for sufficiently large T , we also have

(2.3) Nk(a, T + 1)−Nk(a, T ) ≪ log T.

Now, using [9, Lemma 2.6], for any constants σ1, σ2 and s ∈ C with σ1 < σ < σ2

and large t, we have

(2.4)
ζ(k+1)(s)

ζ(k)(s)− a
=

∑
|γ(k)

a −t|<1

1

s− ρ
(k)
a

+O(log t).
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Lemma 4.1 in [9] states that, for a positive integer k and a sufficiently large σ ≥ E2k,
we have

ζ(k+1)(s)

ζ(k)(s)− a
(2.5)

=


∑

l≥0; n0,...,nl≥2

(−1)k(l+1)

al+1
(log n0)

k+1(log n1... log nl)
k 1

ns
0...n

s
l

(a ̸= 0),

∑
l≥0; n0≥2; n1,...,nl≥3

(
−1

(log 2)k

)l+1

(log n0)
k+1(log n1... log nl)

k 2
(l+1)s

ns
0...n

s
l

(a = 0).

The right-hand side is complicated, so here we abbreviate it to
∑

d≥1 α(d)d
−s.

When k = 0, ζ ′(s)/(ζ(s)− a) also has a convergent Dirichlet series expansion (The
case k = 0 and a ̸= 1 is mentioned in [11, (29)]). Note that α(1) = 0 holds if k > 0
and a ̸= 0.

We finish this section by the following estimate

(2.6) ζ(k)(s) ≪ |t|µ(σ)+ϵ,

which holds as |t| → ∞ for any small ϵ > 0, where the function µ(σ) satisfies the
inequalities

µ(σ) ≤

 0 (σ ≥ 1)
1−σ
2 (0 < σ < 1)

1
2 − σ (σ ≤ 0).

3. Proof of Theorem 1.1

Let a be a complex number. We write s = σ+ it, ρ
(k)
a = β

(k)
a + iγ

(k)
a with real

numbers σ, t, β
(k)
a and γ

(k)
a . The case a = 0 was already proved by Karabulut and

Yildirim in [7], so here we assume a ̸= 0. By the residue theorem, for a sufficiently
large constant B and constant b ∈ (1, 9/8), we have

(3.1)
∑

1<γ(k)
a <T

1−b<β(k)
a <B

ζ(j)
(
ρ(k)a

)
=

1

2πi

∫
R

ζ(j)(s)
ζ(k+1)(s)

ζ(k)(s)− a
ds,

where the integration is taken over a rectangular contour in counterclockwise direc-
tion denoted by R with vertices 1− b+ i, B+ i, B+ iT, 1− b+ iT . Since there are
finitely many a-points in {s ∈ C; Re(s) ≤ 1− b, Im(s) ≥ 1}, we have

∑
1<γ

(k)
a <T

ζ(j)
(
ρ(k)a

)
=

1

2πi

∫
R

ζ(j)(s)
ζ(k+1)(s)

ζ(k)(s)− a
ds+O(1).
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Hence, we have

∑
1<γ

(k)
a <T

ζ(j)
(
ρ(k)a

)(3.2)

=
1

2πi

{∫ B+i

1−b+i

+

∫ B+iT

B+i

+

∫ 1−b+iT

B+iT

+

∫ 1−b+i

1−b+iT

}
ζ(j)(s)

ζ(k+1)(s)

ζ(k)(s)− a
ds+O(1)

=:
1

2πi
(I1 + I2 + I3 + I4) +O(1).

The integral I1 is independent of T , so we have I1 = O(1). Next, we consider I2.
Using (2.5), we get

I2 =

∫ B+iT

B+i

∞∑
n=1

(− log n)j

ns

∑
d≥1

α(d)

ds
ds

=

∞∑
n=1

(− log n)j
∑
d≥1

α(d)

∫ B+iT

B+i

(nd)−sds,

where we define (− log n)j = 1 when n = 1 and j = 0. The integral factor can be
calculated as ∫ B+iT

B+i

(nd)−sds =

{
iT − i (nd = 1)

O
(
(nd)−B

)
(nd > 1).

By these estimates, we obtain

I2 = O(T ).

From (2.4), we have

I3 =
∑

|γ(k)
a −T |<1

∫ 1−b+iT

B+iT

ζ(j)(s)

s− ρ
(k)
a

ds+O

(∫ 1−b+iT

B+iT

(log T )ζ(j)(s)ds

)
.

Now, we change the path of integration. If γ
(k)
a < T , we change the path to the

upper semicircle with center ρ
(k)
a and radius 1. If γ

(k)
a > T , we change the path to

the lower semicircle with center ρ
(k)
a and radius 1. Then, we have

1

s− ρ
(k)
a

≪ 1

on the new path. This estimate and the bound (2.6) yields

I3 = O

T b− 1
2+ϵ

∑
|γ(k)

a −T |<1

1

+O
(
T b− 1

2+ϵ log T
)
.
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In view of the number of a-points (2.3), we obtain

I3 = O
(
T b− 1

2+ϵ log T
)
.

This leads to I3 ≪ T since 1 < b < 9/8.

Finally, we estimate I4. By (2.1) and Stirling’s formula, for fixed 1 < b < 9/8 and
large |t| > 2, we have ∣∣∣ζ(k)(1− b+ it)

∣∣∣ ≍ |t|b−1/2 |log |t||k .(3.3)

Therefore, there exists a constant A such that∣∣∣∣ a

ζ(k)(1− b+ it)

∣∣∣∣ < 1

holds for any |t| ≥ A. We divide the path of the integral into two parts

I4 =

(∫ 1−b+iA

1−b+iT

+

∫ 1−b+i

1−b+iA

)
ζ(j)(s)

ζ(k+1)(s)

ζ(k)(s)− a
ds.

Then, the second term is O(1) since it is independent of T . Using

1

ζ(k)(s)− a
=

M∑
n=0

an

(ζ(k)(s))n+1
+O

(
1∣∣(ζ(k)(s))M+1

∣∣
)
,

we get

I4 = −
M∑
n=0

an
∫ 1−b+iT

1−b+iA

ζ(j)(s)ζ(k+1)(s)

(ζ(k)(s))n+1
ds

+O

(∫ 1−b+iT

1−b+iA

∣∣∣∣ζ(j)(s)ζ(k+1)(s)

(ζ(k)(s))M+1

∣∣∣∣ ds
)

+O(1).

By (3.3), the integrand can be estimated as

ζ(j)(s)ζ(k+1)(s)

(ζ(k)(s))n+1
≍ |t|(b−1/2)(1−n)(log t)−kn+j+1.(3.4)

Hence, each integral can be calculated as∫ 1−b+iT

1−b+iA

ζ(j)(s)ζ(k+1)(s)

(ζ(k)(s))n+1
ds ≪ T (b−1/2)(1−n)+1+ε
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for any small ε > 0. It follows from the last estimate that the sum for n ≥ 2 is
bounded as

M∑
n=2

an
∫ 1−b+iT

1−b+iA

ζ(j)(s)ζ(k+1)(s)

(ζ(k)(s))n+1
ds ≪ T−(b−1/2)+1+ε ≪ T 1/2.

Similarly, one has ∫ 1−b+iT

1−b+iA

∣∣∣∣ζ(j)(s)ζ(k+1)(s)

(ζ(k)(s))M+1

∣∣∣∣ ds ≪ T 1/2.

Therefore, we get

I4 = −
∫ 1−b+iT

1−b+iA

ζ(j)(s)ζ(k+1)(s)

ζ(k)(s)
ds− a

∫ 1−b+iT

1−b+iA

ζ(j)(s)ζ(k+1)(s)

(ζ(k)(s))2
ds+O

(
T 1/2

)
=: −K1 − aK2 +O

(
T 1/2

)
.

Karabulut and Yildirim [7] already studied K1, and they gave an estimate

K1 = −2πi

{
δj,0

T

2π
log

T

2π
+ (−1)jB(j, k)

T

2π

(
log

T

2π

)j+1

+O
(
T (log T )j

)}
.

It remains to evaluate K2. From (3.4), for k ≥ 1, we have

K2 ≪
∫ 1−b+iT

1−b+iA

|log t|j |ds| ≪ T (log T )j ,

so hereafter we consider the case k = 0. In this case, we use Conrey and Ghosh’s
result (see [2, (16)])

(−1)mζ(m)(s) = χ(s)(1 +O(1/|t|))
(
ℓ−

(
d

ds

))m

ζ(1− s)(3.5)

for σ ≤ 1/2 and |t| ≫ 1, where χ(s) := 2(2π)s−1Γ(1 − s) sin(πs/2) and ℓ :=
log(|t|/2π). Substituting this equation into the integrand of K2 with k = 0, we
have

(−1)j+1 (ℓ− (s/ds))
j
ζ(1− s) (ℓ− (d/ds)) ζ(1− s)

(ζ(1− s))2

(
1 +O

(
1

|t|

))
.

Since the path of the integral satisfies Re(s) = 1− b with 1 < b < 9/8, ζ(1− s) ≍ 1
and ζ(j)(1− s) ≪ 1 hold for any non-negative integer j. Therefore, we have

K2 =

∫ 1−b+iT

1−b+iA

(
(−ℓ)j+1 +O

(
(log |t|)j

))
ds

= (−1)j+1iT (log T )j+1 +O
(
T (log T )j

)
.
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Combining K1 and K2, we obtain

I4 = (−1)ji (δj,0 + aδk,0 +B(j, k))T (log T )
j+1

+O
(
T (log T )j

)
.

From estimates of I1, I2, I3 and I4, we finally obtain Theorem 1.1.

4. Concluding Remarks

In this section we present some problems that will be considered in a sequel to
this note.

• Let L(s, χ) be the Dirichlet L-function associated with a primitive character
χ mod q. We believe that we can extend Theorem 1.1 to higher derivatives
of L(s, χ). To do so, we first extend Karabulut and Yildirim’s result given by
equation (1.4) (see [7]) using the same argument as in [6].

• The a-points of an L-function L(s) are the roots of the equation L(s) = a.
We refer to Steuding book [12, chapter 7] and Selberg paper [10] for some
results about a-points of L-functions from the Selberg class. Therefore, it is
an interesting problem to extend Theorem 1.1 to other classes of L-functions
(the Selberg class with some further conditions) and its higher derivatives.

Acknowledgement. The authors thank the anonymous referee for his careful
reading of the manuscript and constructive suggestions which improved the paper.
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[4] R. Garunkštis and J. Steuding, On the roots of the equation ζ(s) = a, Abh. Math.
Semin. Univ. Hambg., 84(2014), 1–15.

[5] D. A. Kaptan, Y. Karabulut and C. Yildirim, Some Mean Value Theorems for the
Riemann Zeta-Function and Dirichlet L-Functions, Comment. Math. Univ. St. Pauli
no. 1-2, 60(2011), 83–87.

[6] Y. Karabulut, Some mean value problems concerning the Riemann zeta function,
M.Sc. Thesis, Bogazici University, (2009).

[7] Y. Karabulut and Y. Yildirim, On some averages at the zeros of the derivatives of
the Riemann zeta-function, J. Number. Theory., 131(2011), 1939–1961.

[8] N. Levinson, Almost all roots of ζ(s) = a are arbitrarily close to σ = 1/2, Proc. Natl.
Acad. Sci. USA, 72(1975), 1322–1324.



On Some Sums at the a-points of Derivatives of ζ-functions 433

[9] T. Onozuka, On the a-points of the derivatives of the Riemann zeta, Eur. J. Math.,
3(1)(2017), 53–76.

[10] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in:
Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori 1989, E.
Bombieri et al. (eds.), Università di Salerno(1992), 367–385.
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