과제정보
This research was funded by Hibah Riset Unpad Riset Data Pustaka Daring (RDPD) Universitas Padjadjaran grant number 1549/UN6.3.1/PT.00/2023.
참고문헌
- A.R. Gairola, A. Singh, L. Rathour, V.N. Mishra, Improved rate of approximation by modification of Baskakov operator, Operators and Matrices 16 (2022), 1097-1123. DOI: http://dx.doi.org/10.7153/oam-2022-16-72
- A.R. Gairola, S. Maindola, L. Rathour, L.N. Mishra, V.N. Mishra, Better uniform approximation by new Bivariate Bernstein Operators, International Journal of Analysis and Applications 20 (2022), 1-19. DOI: https://doi.org/10.28924/2291-8639-20-2022-60
- A.R. Gairola, N. Bisht, L. Rathour, L.N. Mishra, V.N. Mishra, Order of approximation by a new univariate Kantorovich Type Operator, International Journal of Analysis and Applications 21 (2023), 1-17. Article No. 106. DOI: https://doi.org/10.28924/2291-8639-21-2023-106
- J. Alonso, H. Martini, S. Wu, (). On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequationes mathematicae 83 (2012), 153-189.
- H. Anton, C. Rorres, A. Kaul, Elementary Linear Algebra, 12th ed, Wiley, New York, 2019.
- L. Arambasic, R. Rajic, On Birkhoff-James and Roberts orthogonality, Special Matrices 6 (2018), 229-236. https://doi.org/10.1515/spma-2018-0018
- L.J. Arambasic, R. Rajic, Roberts orthogonality for 2 * 2 2O 2 complex matrices, Acta Mathematica Hungarica 157 (2019), 220-228.
- P.M. Bajracharya, B.P. Ojha, Birkhoff orthogonality and different particular cases of Carlsson's orthogonality on normed linear Spaces, Journal of Mathematics and Statistics 16 (2020), 133-141.
- V. Balakrishnan, Mathematical physics: applications and problems, Springer Nature, 2020.
- D. Bhattacharjee, An outlined tour of geometry and topology as perceived through physics and mathematics emphasizing geometrization, elliptization, uniformization, and projectivization for Thruston's 8-geometries covering Riemann over Teichmuller spaces, Authorea Preprints. 2022.
- G. Birkhoff, & J. Von Neumann, The logic of quantum mechanics, The Logico-Algebraic Approach to Quantum Mechanics, Volume I, Historical Evolution, Dordrecht, Springer Netherlands, 1975, 1-26.
- H. Chen, New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes, Designs, Codes and Cryptography, 91 (2023), 1-12.
- J. Chmielinski, Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl. 304 (2005), 158-169.
- Deepmala, L.N. Mishra, V.N. Mishra, Trigonometric Approximation of Signals (Functions) belonging to the W(Lr, ξ(t)), (r ≥ 1)- class by (E, q) (q>0)-means of the conjugate series of its Fourier series, Global Journal of Mathematical Sciences (GJMS) 2 (2015), 61-69.
- J. Dixmier, Sur la reduction des anneaux d'operateurs, In Annales scientifiques de l'Ecole normale suprieure 68 (1951), 185-202.
- H.A. Dye, On the geometry of projections in certain operator algebras, Annals of Mathematics 61 (1955), 73-89.
- B. Jacob, Linear Algebra, University of California, USA, 1990.
- L.N. Mishra, M. Raiz, L. Rathour, V.N. Mishra, Tauberian theorems for weighted means of double sequences in intuitionistic fuzzy normed spaces, Yugoslav Journal of Operations Research 32 (2022), 377-388. DOI: https://doi.org/10.2298/YJOR210915005M
- L.N. Mishra, V.N. Mishra, K. Khatri, Deepmala, On The Trigonometric approximation of signals belonging to generalized weighted Lipschitz W(Lr, ξ(t))(r ≥ 1)- class by matrix (C1 .Np
- G. Lumer, (). Semi-inner-product spaces, Transactions of the American Mathematical Society 100 (1961), 29-43.
- H.A. Moon, T.J. Asaki, M.A. Snipes, Inner Product Spaces and Pseudo-Invertibility, In Application-Inspired Linear Algebra, Cham, Springer International Publishing, 2022, 379-477.
- B.P. Ojha, P.M. Bajrayacharya, Relation of Pythagorean and Isosceles Orthogonality with Best approximations in Normed Linear Space, Mathematics Education Forum Chitwan 4 (2019), 72-78. https://doi.org/10.3126/mefc.v4i4.26360
- C.C. Pugh, Real Mathematical Analysis, Cham, Springer International Publishing, 2015.
- R. Sen, A First Course in Functional Analysis Theory and Applications, Athem Press, London, 2013.
- S. Sylviani, E. Carnia, A.K. Supriatna, An algebraic study of the matrix meta-population model, In Journal of Physics: Conference Series 893 (2017), 012009.
- S. Sylviani, H. Garminia, P. Astuti, Behavior for Time Invariant Finite Dimensional Discrete Linear Systems, Journal of Mathematical Fundamental Sciences 1 (2013).
- S. Sylviani, H. Garminia, P. Astuti, Characterization of orthogonality preserving mappings in indefinite inner product spaces, Journal Mathematics and Computer Science 26 (2021), 10-15.
- M.K. Sharma, N. Dhiman, Vandana, V.N. Mishra, Mediative Fuzzy Pythagorean Algorithm to Multi-criteria Decision-Making and Its Application in Medical Diagnostic, In: Ali, I., Chatterjee, P., Shaikh, A.A., Gupta, N., AlArjani, A. (eds) Computational Modelling in Industry 4.0. Springer, Singapore, 2022. https://doi.org/10.1007/978-981-16-7723-6 14
- U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Arkiv Fysik 23 (1963), 307-341.
- V.N. Mishra, L.N. Mishra, Trigonometric Approximation of Signals (Functions) in Lpnorm, International Journal of Contemporary Mathematical Sciences 7 (2012), 909-918.
- V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala; Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications 2013 (2013), 586. doi:10.1186/1029-242X-2013-586
- V.N. Mishra, K. Khatri, L.N. Mishra; Statistical approximation by Kantorovich type Discrete q-Beta operators, Advances in Difference Equations 2013 (2013), 345. DOI: 10.1186/10.1186/1687-1847-2013-345
- V.N. Mishra, T. Kumar, M.K. Sharma, L. Rathour, Pythagorean and fermatean fuzzy sub-group redefined in context of T-norm and S-conorm, Journal of Fuzzy Extension and Applications 4 (2023), 125-135. https://doi.org/10.22105/jfea.2023.396751.1262
- V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala, Trigonometric approximation of periodic Signals belonging to generalized weighted Lipschitz W' (Lr, ξ(t)), (r ≥ 1)- class by Norlund-Euler (N, pn)(E, q) operator of conjugate series of its Fourier series, Journal of Classical Analysis 5 (2014), 91-105. doi:10.7153/jca-05-08
- V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis, Indian Institute of Technology Roorkee 247 667, Uttarakhand, India, 2007.
- V.N. Mishra, L.N. Mishra, Trigonometric Approximation of Signals (Functions) in Lpnorm, International Journal of Contemporary Mathematical Sciences 7 (2012), 909-918.
- J.S. Lomont, & P. Mendelson, The Wigner unitarity-antiunitarity theorem, Annals of Mathematics 78 (1963), 548-559.
- Z. Yang, Y. Li, A New Geometric Constant in Banach Spaces Related to the Isosceles Orthogonality, Kyungpook Mathematical Journal 62 (2022), 271-287.
- A. Zamani, Approximately bisectrix-Orthogonality preserving mappings, Ferdowsi University of Mashhad, 2015.
- Y. Zhao, M. Yu, S. Wu, C. He. An orthogonality type based on invariant inner products, Aequationes mathematicae 97 (2023), 707-724.