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Abstract. The concept of orthogonality is widely used in various fields

of study, both within and outside the scope of mathematics, especially

algebra. The concept of orthogonality gives a picture of the relationship
between two vectors that are perpendicular to each other, or the inner

product in both of them is zero. However, the concept of orthogonal-
ity has undergone significant development. One of the developments is

Pythagorean orthogonality. In this paper, it is explored topics related to

Pythagorean orthogonality and linear mappings in inner product spaces.
It is also examined how linear mappings preserve Pythagorean orthogo-

nality and provides insights into how mathematical transformations affect

geometric relationships. The results reveal several properties that apply to
linear mappings preserving Pythagorean orthogonality.
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1. Introduction

The concept of orthogonality emerges as a fundamental cornerstone in the rich
landscape of mathematical structures, influencing the understanding of vector
spaces and their geometric relationships. The use of the vector concept has not
only developed within pure mathematics but also finds extensive application
in applied research, see for example [25, 26]. The intriguing interplay between
vectors and angles lies at the heart of this concept, giving rise to the notion
of orthogonality. At the core of our exploration rests the concept of an inner
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product space, a space where vectors possess not only magnitude and direc-
tion but also equipped with a mathematical operation that quantifies the angle
between them. This operation, known as the inner product, encapsulates fun-
damental ideas such as length, projection, and orthogonality within a unified
framework.

The concept of orthogonality boasts multiple applications in diverse fields,
including its relevance in cipher theory and cryptography [12]. However, it is
important to note that the concept of orthogonality has been extensively ex-
plored by researchers, leading to the emergence of various types of orthogonality.
Notable among these developments are Pythagorean orthogonality [8, 22, 38],
isosceles orthogonality [22, 8, 40], Birkhoff-James orthogonality [6], Roberts’
orthogonality [6, 7], and Bisectrix orthogonality [39].

The Pythagorean concept, known through the Pythagorean Theorem, is a
fundamental principle in mathematics, particularly in geometry and linear al-
gebra. The theorem states that in a right-angled triangle, the square of the
length of the hypotenuse is equal to the sum of the squares of the lengths of the
other two sides. Beyond its crucial role in Euclidean geometry, the Pythagorean
concept has extensive applications in various fields of mathematical and physical
research. For instance, in the [33] that produces a significant advancement in the
study of fuzzy set theory and group theory by redefining key concepts and pro-
viding a new framework for understanding Pythagorean Fuzzy Subgroups and
Fermatean Fuzzy Subgroups in the context of t-norm and t-conorm functions.
[28] proposes a mediative Pythagorean fuzzy technique with a novel mediative
correlation coefficient for multi-criteria in decision-making and its implementa-
tion in diagnostic process. There are many other studies that have developed
the Pythagorean concept in various fields ranging from mathematics itself to
applications [?, 18, 19, 30, 31, 32, 34, 35, 36, 14].

Earlier research by [11] explored orthogonality in the context of Hilbert spaces,
which are one of the best known inner product spaces. They emphasized the
importance of orthogonal preserving structures in the development of operator
theory. Furthermore, a study by [20] examined isometric mappings that preserve
distance and, thus, orthogonality in Banach spaces. Although important, this
research focuses more on isometric mapping without examining in more depth
the general linear mapping that preserves Pythagorean orthogonality specifi-
cally. Research by [15] and [16] also made important contributions by exploring
automorphism in inner product-preserving Hilbert spaces. However, there are
still a few studies that specifically examine the conditions under which linear
mappings preserving Pythagorean orthogonality.

While those studies provide a solid foundation for our understanding of linear
mapping and orthogonality, there are several gaps that need to be filled, includ-
ing most research focuses on distance-preserving isometry mapping. This re-
search will examine a more general linear mapping, not limited to isometry, but
still preserving Pythagorean orthogonality. Furthermore, there are no studies
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that discuss the characterization of linear mappings that preserve Pythagorean
orthogonality in inner product spaces.

Linear mappings, with their ability to transform vectors while preserving
linear relationships, assume a pivotal role in our exploration. The notion of
Pythagorean orthogonality-preserving linear mapping unveils a captivating di-
mension: the assurance that if two vectors are orthogonal in their original space,
their transformed images under a linear transformation will retain this orthogo-
nal property in the new space. This transformative power upholds the integrity
of orthogonality amidst mathematical metamorphosis, offering profound insight
into the underlying structures and symmetries that govern vector spaces.

This research was carried out to study the concept and properties of Pythagorean
orthogonality, a development of the standard orthogonality concept often en-
countered. In this article, the concept and properties of orthogonality-preserving
mappings previously studied by [13], are developed for Pythagorean orthogonal-
ity in the scope of inner product spaces. The characterization of linear mappings
that preserve Pythagorean orthogonality is also discussed. The contribution of
this research includes an analysis of mapping that preserves Pythagorean or-
thogonality and its characteristics. Another contribution is that this article
provides insight into the development of the standard orthogonality concept and
its relationship to the concept of mapping that preserves this property.

On the other hand, in [37], it is states that any quantum mechanical invariance
transformation (symmetry transformation) can be represented by a unitary or
antiunitary operator on a complex Hilbert space and that, conversely, any opera-
tor of that kind represents an invariance transformation. In [29], it is generalized
this result by requiring only that T preserves the orthogonality between the one-
dimensional subspaces of H. By highlighting the characterization of linear map-
ping which preserves Pythagorean orthogonality, it provides a bridge for studies
in fields of application, one of which is quantum mechanics. By highlighting the
properties that apply to mapping that preserves Pythagorean orthogonality, this
article also becomes a bridge for studies in fields of application, one of which is
quantum mechanics.

2. Methodologies

2.1. Research Methods. To achieve the research objectives and make a signif-
icant contribution to understanding linear mappings that preserve Pythagorean
orthogonality in inner product spaces, we employ a systematic and structured
methodological approach. This research method comprises several key stages
designed to identify, characterize, and develop theories and applications of such
mappings.

(1) The initial step of this research is to conduct a comprehensive literature
review to understand the context and recent developments in the field
of linear mappings and orthogonality.
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(2) Establishing clear and consistent definitions and notations to be used
throughout this study. This includes definitions of inner product spaces
and Pythagorean orthogonality and formal definitions of linear mappings
that preserve Pythagorean orthogonality

(3) This step involves the development of theories and mathematical proofs
necessary to identify and characterize linear mappings that preserve
Pythagorean orthogonality.

2.2. Terms and Definition. To further understand the concepts and findings
presented in this research, it is essential to establish the terms and definitions
that will be used throughout the article. This section will detail the key termi-
nology and notation related to inner product spaces, Pythagorean orthogonality,
and relevant linear mappings. A clear understanding of these terms and defi-
nitions will help readers follow the arguments and results of the research more
effectively.

Definition 2.1 ([23]). A norm on a vector space D is any function ∥·∥ : D → R
with the properties of vector length:

(1) ∥·∥ ≥ 0 and ∥c∥ = 0 if and only if c = 0.
(2) ∥c+ d∥ ≤ ∥c∥+ ∥d∥
(3) ∥ϕc∥ = |ϕ| ∥c∥
(4) ∥c+ d∥ ≤ ∥c∥+ ∥c∥

where c, d ∈ D and ϕ ∈ R then. A vector space with a norm is called a normed
space

Definition 2.2 ([5]). An inner product on a real vector space A is a function
that associates a real number ⟨c, d⟩ with each pair of vectors in A in such a way
that the following axioms are satisfied for all vectors u, v, and e in V and all
scalars k:
(i) ⟨c, d⟩ = ⟨d, c⟩ (Symmetry)
(ii) ⟨c+ d, e⟩ = ⟨c, e⟩+ ⟨d, e⟩ (Homogeneity)
(iii) ⟨kc, d⟩ = k ⟨c, d⟩ (Homogeneity)
(iv) ⟨c, c⟩ ≥ 0 and

⟨c, c⟩ = 0 ⇔ c = 0 (Positivity)

.

A real vector space with an inner product is called a real inner product space

Definition 2.3 ([5]). If D is an inner product space, the norm or length of

c ∈ D is defined by ∥c∥ =
√
⟨c, c⟩

Theorem 2.4 ([24]). The parallelogram law states that the norm induced by a
scalar product satisfies

∥c+ d∥2 + ∥c− d∥2 = 2
(
∥c∥2 + ∥d∥

)2

.

In this context, c and d represent elements of D as explained in Definition 2.3
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Theorem 2.5 ([24]). The induced norm can also be obtained from the inner
product using a formula known as the polarization identity,

⟨c, d⟩ = 1

4
∥c+ d∥2 − 1

4
∥c− d∥2 ,

where c,d belong to an inner product space.

Corollary 2.6. ∥c− d∥2 = ∥c+ d∥2 − 4 ⟨c, d⟩.

Definition 2.7 ([5]). Two nonzero vectors a and b in Rn are said to be orthog-
onal (a ⊥ b) if ⟨a, b⟩ = 0.

Definition 2.8 ([5]). If L : D → E is a mapping from a vector space D to
a vector space E, then L is called a linear transformation from D to E if the
following two properties hold for all vectors u and v in D and for all scalars k:

(1) L(c+ d) = L(c) + L(d).
(2) L(kc) = kL(c).

In the special case where D = E, the linear transformation L is called a linear
operator on the vector space D.

Definition 2.9 ([4]). Two nonzero vectors a and b in Rn are said to be

Pythagorean orthogonal (a ⊥p b) if ∥a+ b∥2 = ∥a∥2 + ∥b∥2

Definition 2.10 ([27]). Let A and B be two inner product spaces. A mapping
L : A → B is called orthogonality preserving if:

∀a, b ∈ A, a ⊥ b ⇒ L(a) ⊥ L(b).

Definition 2.11 ([27]). Let A and B be two inner product spaces. A mapping
L : A → B is called strongly orthogonality preserving if the above conditions
apply both ways:

∀a, b ∈ A, a ⊥ b ⇔ L(a) ⊥ L(b).

3. Main results

3.1. Properties of Pythagorean Orthogonality. Pythagorean orthogonal-
ity can be seen as an extension of standard orthogonality, illustrated in the the-
orem below. This concept introduces a new perspective on traditional notions
of orthogonality.

Theorem 3.1. If A is an inner product space and a, b ∈ A, then a ⊥ b ⇔ a ⊥p b.

Proof. [⇒]Suppose a, b ∈ A where A is an inner product space, and we have

a ⊥ b means ⟨a, b⟩ = 0, it will be shown a ⊥p b, it must be shown ∥a+ b∥2 =

∥a∥2 + ∥b∥2. Take arbitrary a, b ∈ A, then ∥a+ b∥2 = (
√
⟨(a+ b) , (a+ b)⟩)2 =

⟨(a+ b) , (a+ b)⟩ = ∥a∥2 + 2(⟨a, b⟩) + ∥b∥2 = ∥a∥2 + 2(0) + ∥b∥2 = ∥a∥2 + ∥b∥2.
It follows that a ⊥ b ⇒ a ⊥p b.
[⇐]Take arbitrary a, b ∈ A, where A is an inner product space. Assume that the

condition a ⊥p b holds, it means ∥a+ b∥2 = ∥a∥2 + ∥b∥2, it will be shown that
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a ⊥ b, in other words it must be shown ⟨a, b⟩ = 0. Take arbitrary a, b ∈ A, then

∥a+ b∥2 + ∥a− b∥2 = 2(∥a∥2 + ∥b∥2),
∥a+ b∥2 + ∥a+ b∥2 − 4 ⟨a, b⟩ = 2(∥a∥2 + ∥b∥2),
2 ∥a+ b∥2 − 4 ⟨a, b⟩ = 2(∥a∥2 + ∥b∥2).
substitute ∥a+ b∥2 = ∥a∥2 + ∥b∥2, then we have

2(∥a∥2 + ∥b∥2)− 4 ⟨a, b⟩ = 2(∥a∥2 + ∥b∥2)
0 = −4 ⟨a, b⟩
Hence, we have ⟨a, b⟩ = 0. It has been proved that if a ⊥p b then a ⊥ b. Thus
the biimplication is hold. □

In standard orthogonality, several properties apply, such as non-degeneracy,
symmetry, homogeneity, simplification, right and left additivity. These prop-
erties also apply to Pythagorean orthogonality in inner product spaces. These
properties are briefly described as follows.Let a, b are vectors in a product space
in A such that:

(1) Non-degeneracy, that is a ⊥p a ⇔ a = 0.
(2) Symmetry, that is a ⊥p b ⇔ b ⊥p a.
(3) Homogeneity, that is a ⊥p b ⇔ ϕa ⊥p δb, for all ϕ, δ ∈ R.
(4) Simplification, that is a ⊥p b ⇔ ϕa ⊥p ϕb, for all ϕ ∈ R.
(5) Right additivity, that is a ⊥p b, a ⊥p c ⇒ a ⊥p (b+ c).
(6) Left additivity, that is if b ⊥p a, c ⊥p a, then (b+ c) ⊥p a .

To provide a clearer understanding of these properties, the detailed proofs for
all six properties will be presented below.

Lemma 3.2 (Non-degeneracy). If A is an inner product space and a ∈ A, then
a ⊥p a ⇔ a = 0.

Proof. [⇒]For any inner product space A, suppose a ∈ A, and we have a ⊥p a.

It means that ∥a+ a∥2 = ∥a∥2+∥a∥2. It will be shown a = 0. Take an arbitrary
a ∈ A, then
∥a+ a∥2 = ∥a∥2 + ∥a∥2

∥2a∥2 = (2 ∥a∥)2(
|2|2 ∥a∥

)2
= (2 ∥a∥)2

(4 ∥a∥)2 = (2 ∥a∥)2 .
That conditon will hold when a = 0. It follows that a ⊥p a ⇒ a = 0.
[⇐]For any inner product space A, suppose a ∈ A, and we have a = 0, it will be

shown a ⊥p a. It must be shown ∥a+ a∥2 = ∥a∥2 + ∥a∥2. Take arbitrary a ∈ A,

then ∥a+ a∥2 = ∥2a∥2 = ∥a∥2 + ∥a∥2 + 2 ∥0∥2 = ∥a∥2 + ∥a∥2. It means a ⊥p a,
therefore a = 0 ⇒ a ⊥p a. Thus, a ⊥p a ⇔ a = 0. □

Lemma 3.3 (Symmetry). If A is an inner product space and a, b are any two
elements in A, then a ⊥p b ⇔ b ⊥p a.

Proof. [⇒] Suppose A is an inner product space a, b ∈ A, and we have a ⊥p b .

It means that ∥a+ b∥2 = ∥a∥2 + ∥b∥2 . It will be shown that b ⊥p a, or in other
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words It must be shown that ∥b+ a∥2 = ∥b∥2 + ∥a∥2. Take arbitrary a, b ∈ A,

then ∥b+ a∥2 = ∥a+ b∥2 = ∥a∥2 + ∥b∥2 = (∥b∥)2 + ∥a∥2. It follows that b ⊥p a.
Hence a ⊥p b ⇒ b ⊥p a.
[⇐] Suppose A is an inner product space a, b ∈ A, and we have b ⊥p a. It means

that ∥b+ a∥2 = ∥b∥2 + ∥a∥2, it will be shown a ⊥p b, or in other words, It must

be shown ∥a+ b∥2 = ∥a∥2 + ∥b∥2. Take arbitrary a, b ∈ A, then ∥a+ b∥2 =

∥b+ a∥2 = ∥b∥2+∥a∥2 = ∥a∥2+∥b∥2. It follows that a ⊥p b, therefore b ⊥p a ⇒
a ⊥p b. Hence a ⊥p b ⇔ b ⊥p a. □

Lemma 3.4 (Homogeneity). If A is an inner product space a, b ∈ A and ϕ, δ ∈
R, then we have a ⊥p b ⇔ ϕa ⊥p δb.

Proof. [⇒] Suppose A is an inner product space a, b ∈ A, and we have a ⊥p b.
Based on previous result, it is obtained that a ⊥p b is equivalent to a ⊥ b, means
that ⟨a, b⟩ = 0. it will be shown ϕa ⊥p δb for all ϕ, δ ∈ R. It must be shown

∥ϕa+ δb∥2 = ∥ϕa∥2 + δb2. Take a, b ∈ A and ϕ, δ ∈ R arbitrary, then

∥ϕa+ δb∥2 = (
√
(⟨(ϕa+ δb), (ϕa+ δb)⟩))2

= (
√

⟨(ϕa), (ϕa)⟩)2 + 2ϕδ ⟨a, b⟩+ (
√
⟨(δb), (δb)⟩)2

= ∥ϕa∥2 + 2ϕδ ⟨a, b⟩+ ∥δb∥2

= ∥ϕa∥2 + 2ϕδ · 0 + ∥δb∥2

= ∥ϕa∥2 + ∥δb∥2 .
It follows that ϕa ⊥p δb, therefore it follows a ⊥p b ⇒ ϕa ⊥p δb.

[⇐] Suppose A is an inner product space, a, b ∈ A and ϕ, δ ∈ R, and we have

ϕa ⊥p δb. It means that ∥ϕa+ δb∥2 = ∥ϕa∥2 + ∥δb∥2, it will be shown a ⊥p b.

on the other words, It must be shown ∥a+ b∥2 = ∥a∥2 + ∥b∥2. Consider
∥ϕa+ δb∥2 = (

√
⟨(ϕa+ δb), (ϕa+ δb)⟩)2

= (
√

⟨(ϕa), (ϕa)⟩)2 + 2ϕδ ⟨a, b⟩+ (
√
⟨(δb), (δb)⟩)2

= ∥ϕa∥2 + 2ϕδ ⟨a, b⟩+ ∥δb∥2 ∥ϕa+ δb∥2

= ∥ϕa∥2 + 2ϕδ ⟨a, b⟩+ ∥δb∥2 ∥ϕa∥2 + ∥δa∥2

= ∥ϕa∥2 + 2ϕδ ⟨a, b⟩+ ∥δb∥2
2ϕδ ⟨a, b⟩ = 0

2ϕδ
(

ϕ−1δ−1

2

)
⟨a, b⟩ = 0 ·

(
ϕ−1δ−1

2

)
⟨a, b⟩ = 0.

Hence, it is equivalent to ∥a+ b∥2 = ∥a∥2 + ∥b∥2. It follows that ∥a+ b∥2 =

∥a∥2 + ∥b∥2 means that a ⊥p b, therefore it follows that ϕa ⊥p δb ⇒ a ⊥p b.
Thus, it follows that a ⊥p b ⇔ ϕa ⊥p δb. □

Lemma 3.5 (Simplification). If A is an inner product space, a, b ∈ A and
ϕ ∈ R, then a ⊥p b ⇔ ϕa ⊥p ϕb.

Proof. [⇒] Suppose A is an inner product space a, b ∈ A, and a ⊥p b means that

∥a+ b∥2 = ∥a∥2 + ∥b∥2. It will be shown ϕa ⊥p ϕb for all ϕ ∈ R. Take arbitrary

a ∈ R, then ∥ϕa+ ϕb∥2 = ((∥ϕ(a+ b)∥))2 = (|ϕ| (∥a∥))2+(|ϕ| (∥b∥))2 = ∥ϕa∥2+
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∥ϕb∥2. It follows that ϕa ⊥p ϕb, therefore a ⊥p b ⇒ ϕa ⊥p ϕb.
[⇐] Suppose A is an inner product space, a, b ∈ A, and ϕ ∈ R, and we have

ϕa ⊥p ϕb. It means that ∥ϕa+ ϕb∥2 = ∥ϕa∥2 + ∥ϕb∥2. It must be shown

∥a+ b∥2 = ∥a∥2 + ∥b∥2.
∥ϕa+ ϕb∥2 = ∥ϕa∥2 + ∥ϕb∥2 ∥ϕ(a+ b)∥2

= ∥ϕa∥2 + ∥ϕb∥2 (|ϕ| (∥a+ b∥))2

= (|ϕ| (∥a∥))2 + (|ϕ| (∥b∥))2 |ϕ|2 ∥a+ b∥2

= |ϕ|2 ∥a∥2 + |ϕ|2 ∥b∥2 |ϕ|2 ∥a+ b∥2

= |ϕ|2(∥a∥2 + ∥b∥2) ∥a+ b∥2

= ∥a∥2 + ∥b∥2 .
It follows that a ⊥p b, therefore ϕa ⊥p ϕb ⇒ a ⊥p b. Thus a ⊥p b ⇔ ϕa ⊥p

ϕb. □

Lemma 3.6 (Right additivity). If A is an inner product space and a, b, c ∈ A,
then we have a ⊥p b, a ⊥p c ⇒ a ⊥p (b+ c).

Proof. Suppose A is an inner product space a, b, c ∈ A, and we have a ⊥p b is
equivalent to ⟨a, b⟩ = 0 and a ⊥p c is equivalent to ⟨a, c⟩ = 0. It will be shown
a ⊥p (b+ c). Consider

∥a+ (b+ c)∥2 = (
√

⟨(a+ (b+ c)), (a+ (b+ c))⟩)2
= ⟨(a+ (b+ c)), (a+ (b+ c))⟩
= ⟨a, (a+ (b+ c))⟩+ ⟨(b+ c), (a+ (b+ c))⟩
= ⟨(a+ (b+ c)), a⟩+ ⟨(a+ (b+ c)), (b+ c)⟩
= ⟨a, a⟩+ ⟨(b+ c), a⟩+ ⟨a, (b+ c)⟩+ ⟨(b+ c), (b+ c)⟩
= ⟨a, a⟩+ ⟨(b+ c), a⟩+ ⟨(b+ c), a⟩+ ⟨(b+ c), (b+ c)⟩
= ⟨a, a⟩+ ⟨(b+ c), (b+ c)⟩+ 2 ⟨(b+ c), a⟩
= ⟨a, a⟩+ ⟨(b+ c), (b+ c)⟩+ 2(⟨b, a⟩+ ⟨c, a⟩)
= ⟨a, a⟩+ ⟨(b+ c), (b+ c)⟩+ 2(⟨a, b⟩+ ⟨a, c⟩)
= ⟨a, a⟩+ ⟨(b+ c), (b+ c)⟩+ 2(0 + 0)

= (
√
⟨a, a⟩)2 + (

√
⟨(b+ c), (b+ c)⟩)2

= ∥a∥2 + ∥b+ c∥2 .
Thus a ⊥p b, a ⊥p c ⇒ a ⊥p (b+ c). □

Lemma 3.7 (Left additivity). If A is an inner product space and a, b, c ∈ A,
then b ⊥p a, c ⊥p a ⇒ (b+ c) ⊥p a.

Proof. Suppose A is an inner product space a, b, c ∈ A. We have that b ⊥p a
is equivalent to ⟨b, a⟩ = 0 and c ⊥p a is equivalent to ⟨c, a⟩ = 0. Next it will

be shown (b + c) ⊥p a,or in other words it must be shown ∥(b+ c) + a∥2 =

∥b+ c∥2 + ∥a∥2. Consider
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∥(b+ c) + a∥2 = (
√
⟨((b+ c) + a), ((b+ c) + a)⟩)2

= ⟨((b+ c) + a), ((b+ c) + a)⟩
= (

√
⟨(b+ c), (b+ c)⟩)2 + (

√
⟨a, a⟩)2 + 2(⟨a, b⟩+ ⟨a, c⟩)

=
(
∥b+ c∥2 + ∥a∥

)2

+ 2(⟨b, a⟩+ ⟨c, a⟩)

=
(
∥b+ c∥2 + ∥a∥

)2

+ 2(0 + 0)

=
(
∥b+ c∥2 + ∥a∥

)2

.

Thus it follows that b ⊥p a, c ⊥p a ⇒ (b+ c) ⊥p a
□

Several characteristics of Pythagorean orthogonality have been outlined. The
following section will examine the identification of linear mappings that preserve
Pythagorean orthogonality.

3.2. Preservation of Pythagorean Orthogonality in Linear Mapping.
As briefly discussed in the introduction, the concept of linear mappings that pre-
serve orthogonality provides a bridge between pure mathematics and quantum
mechanics. Chmieliński has characterized linear mappings that preserve stan-
dard orthogonality. In this article, we extend Chmieliński’s results to the concept
of Pythagorean orthogonality. Several characterizations have been established,
with the first being described by Theorem 3.8 below.

Theorem 3.8. Let A and B be two inner product spaces. Suppose L : A → B
is a linear mapping, and there exists a nonzero real number ϕ such that for all
c ∈ A, we have ⟨L(c), L(c)⟩ = ϕ⟨c, c⟩.Then, for all c, d ∈ A, it follows that
⟨L(c), L(d)⟩ = ϕ⟨c, d⟩.

Proof. Suppose that A and B are two inner product spaces. Let L : A → B
be a linear mapping and there exists a nonzero real number ϕ such that for
any c ∈ A ⟨L(c), L(c)⟩ = ϕ ⟨c, c⟩. It will be shown that for every c, d ∈ A , we
have ⟨L(c), L(d)⟩ = ϕ ⟨c, d⟩ . Take c, d ∈ A arbitrary. Based on the polarization
identity, we obtain

⟨L(c), L(d)⟩
= 1

4 ∥L(c) + L(d)∥2 − 1
4 ∥L(c)− L(d)∥2

= 1
4 ∥L(c) + L(d)∥2 − 1

4 ∥L(c) + L(−d)∥2

= 1
4 ∥L(c+ d)∥2 − 1

4 ∥L(c− d)∥2

= 1
4 ((∥L(c+ d)∥)2 − ∥L(c− d)∥2)

= 1
4 ((

√
⟨L(c+ d), L(c+ d)⟩)2 − (

√
⟨L(c− d), L(c− d)⟩)2)

= 1
4 (⟨L(c+ d), L(c+ d)⟩ − ⟨L(c− d), L(c− d)⟩)

= 1
4 (ϕ ⟨c+ d, c+ d⟩ − ϕ ⟨c− d, c− d⟩)

= 1
4ϕ(⟨c+ d, c+ d⟩ − ⟨c− d, c− d⟩)

= 1
4ϕ(⟨c, c+ d⟩+ ⟨d, c+ d⟩ − (⟨c, c− d⟩+ ⟨−d, c− d⟩))

= (⟨c, c+ d⟩+ ⟨d, c+ d⟩ − (⟨c, c− d⟩ − ⟨d, c− d⟩))
= 1

4ϕ(⟨c+ d, c⟩+ ⟨c+ d, d⟩ − (⟨c− d, c⟩ − ⟨c− d, d⟩))
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= 1
4ϕ(⟨c+ d, c⟩+ ⟨c+ d, d⟩ − ⟨c− d, c⟩+ ⟨c− d, d⟩)

= 1
4ϕ(⟨c, c⟩+ ⟨d, c⟩+ ⟨c, d⟩+ ⟨d, d⟩ − (⟨c, c⟩+ ⟨−d, c⟩) + ⟨c, d⟩+ ⟨−d, d⟩)

= 1
4ϕ(⟨c, c⟩+ ⟨d, c⟩+ ⟨c, d⟩+ ⟨d, d⟩ − (⟨c, c⟩ − ⟨d, c⟩) + ⟨c, d⟩ − ⟨d, d⟩)

= 1
4ϕ(⟨c, c⟩+ ⟨d, c⟩+ ⟨c, d⟩+ ⟨d, d⟩ − ⟨c, c⟩+ ⟨d, c⟩+ ⟨c, d⟩ − ⟨d, d⟩)

= 1
4ϕ(⟨c, c⟩+ ⟨c, d⟩+ ⟨c, d⟩+ ⟨d, d⟩ − ⟨c, c⟩+ ⟨c, d⟩+ ⟨c, d⟩ − ⟨d, d⟩)

= 1
4ϕ(4 ⟨c, d⟩)

= ϕ ⟨c, d⟩ .
Thus, it is proven that ⟨L(c), L(d)⟩ = ϕ(⟨c, d⟩). □

Theorem 3.9. Suppose A and B are two inner product spaces. Let L be a
mapping that maps A to B. If there exists a nonzero real number ϕ such that
for every c, d ∈ A we have ⟨L(c), L(d)⟩ = ϕ ⟨c, d⟩, then L is a linear mapping
and preserves Pythagorean orthogonality strongly.

Proof. Suppose L is a mapping that maps the inner product space of A to B.
Suppose also that c, d ∈ A, there exists a nonzero real number ϕ such that

⟨L(c), L(d)⟩ = ϕ ⟨c, d⟩ . (1)

We will prove:

(1) The mapping L is a linear mapping.
(2) The mapping L strongly preserves Pythagorean orthogonality.

First by definition, it will be shown that for every a, b, c, d ∈ A and for all
scalars δ , we have:

(1) ⟨L(a+ b), L(c+ d)⟩ = ⟨L(a) + L(b), L(c) + L(d)⟩ .
(2) ⟨L(δa), L(δb)⟩ = ⟨δL(a), δL(b)⟩ .

Take a, b, c, d ∈ A and an arbitrary scalar δ. Based on equation (1) it is ob-
tained
⟨L(a+ b), L(c+ d)⟩ = ϕ ⟨a+ b, c+ d⟩

= ϕ(⟨a, c+ d⟩+ ⟨b, c+ d⟩)
= ϕ(⟨c+ d, a⟩+ ⟨c+ d, b⟩)
= ϕ(⟨c, a⟩+ ⟨d, a⟩+ ⟨c, b⟩+ ⟨d, b⟩)
= ϕ ⟨c, a⟩+ ϕ ⟨d, a⟩+ ϕ ⟨c, b⟩+ ϕ ⟨d, b⟩
= ⟨L(c), L(a)⟩+ ⟨L(d), L(a)⟩+ ⟨L(c), L(b)⟩+ ⟨L(d), L(b)⟩
= ⟨L(c) + L(d), L(a)⟩+ ⟨L(c) + L(d), L(b)⟩
= ⟨L(a), L(c) + L(d)⟩+ ⟨L(b), L(c) + L(d)⟩
= ⟨L(a) + L(b), L(c) + L(d)⟩ .

It is proven that the first is satisfied. Furthermore, based on equation (1) it is
also obtained that
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⟨L(δa), L(δb)⟩ = ϕ ⟨δa, δb⟩
= ϕδ ⟨a, δb⟩
= ϕδ ⟨δb, a⟩
= ϕδ2 ⟨b, a⟩
= δ2ϕ ⟨b, a⟩
= δ2 ⟨L(b), L(a)⟩
= δ ⟨δL(b), L(a)⟩
= δ ⟨L(a), δL(b)⟩
= ⟨δL(a), δL(b)⟩ .

It is proven that the second condition is satisfied. Thus, it is proven that the
mapping L is a linear mapping.

Secondly it will be shown that L preserves Pythagorean orthogonality strongly.
It will be shown that for every a, b ∈ A we have a ⊥p b if and only if L(a) ⊥p L(b).
[⇒] Suppose A is an inner product space and L a linear mapping. If for ev-

ery a, b ∈ A we have a ⊥p b, it means that if ∥a+ b∥2 = ∥a∥2 + ∥b∥2 , then

L(a) ⊥p L(b). It will be shown that ∥L(a) + L(b)∥2 = ∥L(a)∥2 + ∥L(b)∥2. Take
arbitrary a, b ∈ A, then
∥L(a) + L(b)∥2 = ∥L(a+ b)∥2

= (
√

⟨L(a+ b), L(a+ b)⟩)2
= ⟨L(a+ b), L(a+ b)⟩
= ϕ ⟨a+ b, a+ b⟩
= ϕ(

√
⟨a+ b, a+ b⟩)2

= ϕ ∥a+ b∥2 .
Substitute ∥a+ b∥2 = ∥a∥2 + ∥b∥2, we obtain

∥L(a) + L(b)∥2 = ϕ(∥a∥2 + ∥b∥2)
= ϕ((

√
⟨a, a⟩)2 + (

√
⟨b, b⟩)2)

= ϕ(⟨a, a⟩+ ⟨b, b⟩)
= ϕ ⟨a, a⟩+ ϕ ⟨b, b⟩
= ∥L(a)∥2 + ∥L(b)∥2 .

Hence it is proven that a ⊥p b ⇒ L(a) ⊥p L(b).
[⇐] Suppose A is an inner product space and L a linear mapping, if for every

a, b ∈ A we have L(a) ⊥p L(b), it means that if ∥L(a) + L(b)∥2 = ∥L(a)∥2 +

∥L(b)∥2, then a ⊥p b. Next, it will be shown that ∥a+ b∥2 = ∥a∥2 + ∥b∥2. Take
arbitrary a, b ∈ A . Consider
∥L(a) + L(b)∥2 = ∥L(a)∥2 + ∥L(b)∥2

∥L(a+ b)∥2 = ∥L(a)∥2 + ∥L(b)∥2

(
√

⟨L(a+ b), L(a+ b)⟩)2 = (
√
⟨L(a), L(a)⟩)2 + (

√
⟨L(b), L(b)⟩)2

⟨L(a+ b), L(a+ b)⟩ = ⟨L(a), L(a)⟩+ ⟨L(b), L(b)⟩
ϕ ⟨a+ b, a+ b⟩ = ϕ ⟨a, a⟩+ ϕ ⟨b, b⟩
ϕ ⟨a+ b, a+ b⟩ = ϕ(⟨a, a⟩+ ⟨b, b⟩)
⟨a+ b, a+ b⟩ = ⟨a, a⟩+ ⟨b, b⟩
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(
√
⟨a+ b, a+ b⟩)2 = (

√
⟨a, a⟩)2 + (

√
⟨b, b⟩)2

∥a+ b∥2 = ∥a∥2 + ∥b∥2 .
Hence L(a) ⊥p L(b) ⇒ a ⊥p b. Thus it is proven that a ⊥p b ⇔ L(a) ⊥p

L(b)which means that L preserves Pythagorean orthogonality strongly. From
statements (1) and (2) it can be concluded that for two inner product spaces A
and B, L is a mapping that maps A to B. If there exists a nonzero real number
ϕ such that for every c, d ∈ A we have ⟨L(c), L(d)⟩ = ϕ ⟨c, d⟩, then L is a linear
mapping and preserves Pythagorean orthogonality strongly.

□

Theorem 3.10. Suppose A and B are two inner product spaces. If the mapping
L : A → B is linear and preserves Pythagorean orthogonality strongly then
L : A → B is linear and preserves Pythagorean orthogonality.

Proof. Suppose A and B are two inner product spaces. Let L : A → B is a linear
mepping and preserves Pythagorean orthogonality strongly. It means that if for
every c, d ∈ A we have c ⊥p d ⇔ L(c) ⊥p L(d), then L is linear and preserves
Pythagorean orthogonality. From the assumtion above, it is clear that L linear
mapping that preserves Pythagorean orthogonality. □

4. Conclusions

Investigation into Pythagorean orthogonality-preserving linear mapping within
inner product spaces unveils the harmonious interplay of geometry and algebra.
This concept bridges the gap between abstract mathematical structures and
practical applications, offering insights that redefine the way we perceive vectors,
spaces, and their transformations. As we delve into this realm, we find ourselves
on a journey that not only enriches our theoretical foundations but also em-
powers us to create innovative solutions that transcend traditional boundaries.
According to the findings, the properties that apply in Pythagorean orthogo-
nality in the inner product space are non-degeneracy, symmetry, homogeneity,
simplification, right-additivity, and left-additivity. The characterization of linear
mappings that preserve Pythagorean orthogonality in the inner product space
includes: Strong preservation of Pythagorean orthogonality, and preservation of
orthogonality. What is interesting to study further is to apply these results to a
larger space. In [27], it is explained that the inner product space has undergone
many developments. Some of them are semi-inner product spaces and indefi-
nite inner product spaces. A paper outlining the results in these spaces is in
preparation.

This research also opens up several potential avenues for further exploration.
One avenue is to expand the analysis into more complex inner product spaces
such as Sobolev spaces or Banach spaces. In addition to theoretical aspects,
future research can also explore practical applications. Investigating the practi-
cal applications of linear mappings that preserve orthogonality in fields such as
information theory, signal processing, and quantum computing can demonstrate
the relevance and practical benefits of these findings.
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