DOI QR코드

DOI QR Code

Sneak circuit analysis based performance optimization for ZVT PWM boost converters

  • Min Li (College of Automation, Zhongkai University of Agriculture and Engineering) ;
  • Bo Zhang (School of Electric Power, South China University of Technology) ;
  • Dongyuan Qiu (School of Electric Power, South China University of Technology) ;
  • Aimin Miao (College of Automation, Zhongkai University of Agriculture and Engineering)
  • Received : 2023.10.14
  • Accepted : 2024.04.03
  • Published : 2024.10.20

Abstract

The mechanism of a ZVT PWM boost converter is analyzed in detail in this study. In addition, the comprehensive parasitic parameters are taken into consideration. It is discovered that some unexpected modes, referred to as sneak circuit modes, occur during the operation of the converter, when certain excitation conditions are applied. Parasitic parameters and dynamic sneak paths impact the converter operating performance, causing both positive and negative effects. The effects of sneak circuits and excitation conditions are analyzed so that those with negative effects can be eliminated, and those with positive effects can be utilized. In contrast to previous works, sneak circuit phenomena are utilized to optimize the converter performance. Furthermore, parasitic circuit elements are identified and quantitatively determined to estimate their impact on the switching performance of the converter. Combining parameter optimization and topology optimization, soft switching is achieved in both the main power switch and the auxiliary power switch, and waveform distortion is reduced. Finally, simulation and experimental results are included to verify the theoretical analyses.

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of Guangdong Province under Grant Nos. 2019A1515111023 and 2021A1515010616, and Higher Education Teaching Special Project under Grant Nos.2022GXJK214.

References

  1. Wang, Yu., Guan, Y., Molinas, M., et al.: Open-circuit switching fault analysis and tolerant strategy for dual-active-bridge DC-DC converter considering parasitic parameters. IEEE Trans. Power Electron. 37(12), 15020-15034 (2022) 
  2. Dao, N. D., Lee, D.-C.: Passive soft-switching circuit for high power density SiC-based dc-dc boost converter. In IEEE Appl. Power Electron Conf Expo (APEC), pp. 2136-2141 (2020) 
  3. Esteki, M., Mohammadi, M., Yazdani, M.R., et al.: Family of soft-switching pulse-width modulation converters using coupled passive snubber. IET Power Electron. 10(7), 792-800 (2017) 
  4. Joo, H. I., Han, S. K.: A passive lossless snubber for bidirectional buck/boost converter. in Proc. 43rd Annu. IEEE Ind. Electron. Conf. Soc., pp. 1723-1728, (2017) 
  5. Spiazzi, G.: Analysis and design of the soft-switched clamped-resonant interleaved boost converter. CPSS Trans. Power Electron. Appl. 4(4), 276-287 (2019) 
  6. Li, R.T.H., Ho, C.N.M.: An active snubber cell for N-phase interleaved DC-DC converters. IEEE J. Emerg. Select. Topics Power Electron. 4(2), 344-351 (2016) 
  7. Zhang, X., Qian, W., Li, Z.: Design and analysis of a novel ZVZCT boost converter with coupling effect. IEEE Trans. Power Electron. 32(12), 8992-9000 (2017) 
  8. Bodur, H., Yildirmaz, S.: A new ZVT snubber cell for PWM-PFC boost converter. IEEE Trans. Ind. Electron. 64(1), 300-309 (2017) 
  9. Aksoy, I., Bodur, H., Bakan, A.F.: A new ZVT-ZCT-PWM DC-DC converter. IEEE Trans. Power Electron. 25(8), 2093-2105 (2010) 
  10. Tran, H.N., Choi, S.: A family of ZVT DC-DC converters with low-voltage ringing. IEEE Trans. Power Electron. 35(1), 59-69 (2020) 
  11. Ting, N.S., Sahin, Y.: Design and implementation of a Flyback-assisted wide-range fully soft-switched T-type inverter. IEEE Trans. Power Electron. 38(7), 8643-8653 (2023) 
  12. Wang, J., Xun, Y., Liu, X., et al.: Soft switching circuit of high-frequency active neutral point clamped inverter based on SiC/Si hybrid device. J Power Electron. 21(1), 71-84 (2021) 
  13. Han, D. W., Lee, H. J., Shin, S. C., et al.: A new soft switching ZVT boost converter using auxiliary resonant circuit. In IEEE Vehicle Power and Propulsion Conference, pp.1250-1255, (2012) 
  14. Tofoli, F.L., Pereira, D.C., de Paula, W.J., et al.: Survey on nonisolated high-voltage step-up dc-dc topologies based on the boost converter. IET Power Electron. 8(10), 2044-2057 (2015) 
  15. Yao, T., Nan, C., Ayyanar, R.: A new soft-switching topology for switched inductor high gain boost. IEEE Trans. Ind. Appl. 54(3), 2449-2458 (2018) 
  16. Yesilyurt, H.: Hybrid soft switching DC-DC boost converter. Int J Circ Theor Appl. 50(6), 2175-2189 (2022) 
  17. Chen, T., Narimani, M.: Soft-switching T-type multilevel inverter. J. Power Electron. 19(5), 1182-1192 (2019) 
  18. Kim, Y., Kim, J., Choi, K., et al.: A novel soft-switched auxiliary resonant circuit of a PFC ZVT-PWM boost converter for an integrated multichip power module fabrication. IEEE Trans. Ind. Appl. 49(6), 2802-2809 (2013) 
  19. Chen, Y.T., Li, Z.M., Liang, R.H.: A novel soft-switching interleaved coupled-inductor boost converter with only single auxiliary circuit. IEEE Trans. Power Electron. 33(3), 2267-2281 (2018) 
  20. Akhlaghi, B., Farzanehfard, H.: Family of ZVT interleaved converters with low number of components. IEEE Trans. Ind. Electron. 65(11), 8565-8573 (2018) 
  21. Y.-T. Chen, Z.-M. Li, and R.-H. Liang.: A novel soft-switching interleaved coupled-inductor boost converter with only single auxiliary circuit. IEEE Trans. Power Electron. 33(3), 2267-2281(2018). 
  22. Hong, J., Deng, X., Zhang, G., et al.: Sneak circuit identification of an improved boost converter with soft-switching realization. IEEE J. Emerg. Select. Topics Power Electron. 7(4), 2394-2402 (2019) 
  23. M. Li, B. Zhang, D. Qiu and G. Zhang.: Sneak circuit phenomena in a DCM boost converter considering parasitic parameters. IEEE Trans. Power Electron. 32(5), 3946-3958(2017). 
  24. Sanjaya Maniktala.: Switching Power Supplies A-Z, 2E. Second Edition, Elsevier Inc. USA (2012) 
  25. Wang, J.J., Chung, H.S.-H.: Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter. IEEE Trans. Power Electron. 29(12), 6672-6685 (2014) 
  26. Wang, J.J., Chung, H.S.-H., Li, R.T.-H.: Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance. IEEE Trans. Power Electron. 28(1), 573-590 (2013) 
  27. Daniel, C., Dragan, M., Regan, Z.: Circuit-oriented treatment of nonlinear capacitances in switched-mode power supplies. IEEE Trans. Power Electron. 30(2), 985-995 (2015)