Acknowledgement
This research was supported by basic research funding from the Korea Astronomy and Space Science Institute (KASI) (KASI2024185002). J. Kim acknowledges support from the National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. NRF-2022R1C1C2009591). The OMNI solar wind data were provided by NASA CDAWeb (https://cdaweb.gsfc.nasa.gov/pub/data/omni/omni_cdaweb/hro_1min/). The Sym-H and AU/AL indices were provided by World Data Center for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html). The GOES 16 and 18 MAG and SEISS data were provided by National Centers for Environmental Information, National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/products/space-weather/satellites). The GK2A KSEM MG and PD data were provided by National Meteorological Satellite Center, Korea Meteorological Administration (https://datasvc.nmsc.kma.go.kr/datasvc/html/data/listData.do). We thank AE stations (Abisko [SGU, Sweden], Dixon Island, Cape Chelyuskin, Tixie Bay, Pebek [AARI, Russia], Barrow, College [USGS, USA], Yellowknife, Fort Churchill, Sanikiluaq (Poste-de-la-Baleine) [GSC, Canada], Narsarsuaq [DTU Space, Denmark], and Leirvogur [U. Iceland, Iceland]) as well as the RapidMAG team (NiCT, JHU/APL, UoA, AARI, and IDG) for their cooperation and efforts in operating these stations and providing data for the provisional AE index. We would like to extend our gratitude to the GFZ German Research Centre for Geosciences for providing the essential geomagnetic data used in this research. Their contributions were invaluable in the calculation and analysis of the Kp index (https://kp.gfz-potsdam.de/en/). The authors acknowledge the SSUSI and GUVI teams of JHU/APL for their efforts in producing and maintaining the data products used in this study. We also appreciate the use of SuperDARN data, which is funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, United Kingdom, and the United States of America. We acknowledge the use of ionosonde data from the Icheon and Jeju sites provided by the SAO-X database server linked to the GIRO network (Reinisch & Galkin, 2011). Additionally, we appreciate the data from the Wakkanai and Yamagawa sites downloaded from the NICT website. The GNSS RINEX data and navigation files were obtained from the NASA CDDIS, and the DCB files for TEC calculation were sourced from the AIUB FTP server. Furthermore, we acknowledge the SuperMAG network for providing magnetometer data.
References
- Arge CN, Luhmann JG, Odstrcil D, Schrijver CJ, Li Y, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys. 66, 1295-1309 (2004). https://doi.org/10.1016/j.jastp.2004.03.018
- Arge CN, Pizzo VJ, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res. 105, 10465-10480 (2000). https://doi.org/10.1029/1999JA000262
- Axford WI, Hines CO, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Can. J. Phys. 39, 1433-1464 (1961). https://doi.org/10.1139/p61-172
- Birn J, Hesse M, Energy release and conversion by reconnection in the magnetotail. Ann. Geophys. 23, 3365-3373 (2005). https://doi.org/10.5194/angeo-23-3365-2005
- Birn J, Thomsen MF, Borovsky JE, Reeves GD, McComas DJ, et al., Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit, J. Geophys. Res. Space Phys. 102, 2309-2324 (1997). https://doi.org/10.1029/96JA02870
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. The large angle spectroscopic coronagraph (LASCO), Sol. Phys. 162, 357-402 (1995). https://doi.org/10.1007/BF00733434
- Chisham G, Lester M, Milan SE, Freeman MP, Bristow WA, et al., A decade of the super dual auroral radar network (SuperDARN): scientific achievements, new techniques and future directions, Surv. Geophys. 28, 33-109 (2007). https://doi.org/10.1007/s10712-007-9017-8
- Chung JK, Wu Q, Kim YH, Won YI, Solomon S, et al., Enhancement of OI 630.0 nm emission at mid-latitudes during an intense magnetic storm, J. Atmos. Sol. Terr. Phys. 69, 697-706 (2007). https://doi.org/10.1016/j.jastp.2007.01.010
- Cid C, Cremades H, Aran A, Mandrini C, Sanahuja B. et al., Can a halo CME from the limb be geoeffective? J. Geophys. Res. 117, A11102 (2012). https://doi.org/10.1029/2012JA017536
- Dang T, Li X, Luo B, Li R, Zhang B, et al., Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022, Space Weather, 20, e2022SW003152 (2022). https://doi.org/10.1029/2022SW003152
- Deng Y, Ridley AJ, Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution and vertical velocity, J. Geophys. Res. Space Phys. 112, A09308 (2007). https://doi.org/10.1029/2006JA012006
- Domingo V, Fleck B, Poland AI, The SOHO mission: an overview, Sol. Phys. 162, 1-37 (1995). https://doi.org/10.1007/BF00733425
- Dungey JW, Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett. 6, 47-48 (1961). https://doi.org/10.1103/PhysRevLett.6.47
- Fang TW, Kubaryk A, Goldstein D, Li Z, Fuller-Rowell T, et al., Space weather environment during the SpaceX Starlink satellite loss in February 2022, Space Weather, 20, e2022SW003193 (2022). https://doi.org/10.1029/2022SW003193
- Fuller-Rowell TJ, Rees D, A three-dimensional time-dependent global model of the thermosphere, J. Atmos. Sci. 37, 2545-2567 (1980). https://doi.org/10.1175/1520-0469(1980)037<2545:ATDTDG>2.0.CO;2
- Gjerloev JW, A global ground-based magnetometer initiative, Eos, Trans. Am. Geophys. Union. 90, 230-231 (2009). https://doi.org/10.1029/2009EO270002
- Gjerloev JW, The SuperMAG data processing technique, J. Geophys. Res. Space Phys. 117, A09213 (2012). https://doi.org/10.1029/2012JA017683
- Gonzalez WD, Echer E, A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms, Geophys. Res. Lett. 32, L18103 (2005). https://doi.org/10.1029/2005GL023486
- Gosling JT, Bame SJ, McComas DJ, Phillips JL, Coronal mass ejections and large geomagnetic storms, Geophys. Res. Lett. 17, 901-904, (1990) https://doi.org/10.1029/GL017i007p00901
- Greenwald RA, Baker KB, Dudeney JR, Pinnock M, Jones TB, et al., DARN/SuperDARN, Space Sci. Rev. 71, 761-796 (1995). https://doi.org/10.1007/BF00751350
- Henderson MG, Skoug R, Donovan E, Thomsen MF, Reeves GD, et al., Substorms during the 10-11 August 2000 sawtooth event, J. Geophys. Res. Space Phys. 111, A06206 (2006). https://doi.org/10.1029/2005JA011366
- Imtiaz N, Dugassa T, Calabia A, Anoruo C, Kashcheyev A, Westward PPEF plays important role in the suppression of post-midnight plasma irregularities: a case study of the November 2021 geomagnetic storm, J. Geophys. Res. Space Phys. 129, e2023JA032367 (2024). https://doi.org/10.1029/2023JA032367
- Jung J, Oh S, Yi Y, Evenson P, Pyle R, et al., Installation of neutron monitor at the Jang Bogo station in Antarctica, J. Astron. Space Sci. 33, 345-348 (2016). https://doi.org/10.5140/JASS.2016.33.4.345
- Kang J, Jang DY, Kim Y, Kang BH, Kim YK, et al., Characteristics of the 18-tube NM64-type Daejeon neutron monitor in Korea, J. Korean Phys. Soc. 61, 720-729 (2012). https://doi.org/10.3938/jkps.61.720
- Kim J, Kwak YS, Lee C, Lee J, Kam H, et al., Observational evidence of thermospheric wind and composition changes and the resulting ionospheric disturbances in the European sector during extreme geomagnetic storms, J. Space Weather Space Clim. 13, 24 (2023). https://doi.org/10.1051/swsc/2023025
- Kim JH, Kwak YS, Validating the IRI-2020 model for ionospheric storms over the North-east Asian sector induced by extreme geomagnetic storms, Adv. Space Res. (2024). https://doi.org/10.1016/j.asr.2024.07.032
- King JH, Papitashvili NE, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data, J. Geophys. Res. Space Phys. 110, A02104 (2005). https://doi.org/10.1029/2004JA010649
- Kokubun S, Characteristics of storm sudden commencement at geostationary orbit, J. Geophys. Res. Space Phys. 88, 10025-10033 (1983). https://doi.org/10.1029/JA088iA12p10025
- Kwak YS, Richmond AD, An analysis of the momentum forcing in the high-latitude lower thermosphere, J. Geophys. Res. 112, A01306 (2007). https://doi:10.1029/2006JA011910
- Kwak YS, Richmond AD, Momentum and energy budgets in the high-latitude lower thermospheric wind system. in Geophysical Monograph 261, eds. Wang W, Zhang Y (American Geophysical Union, Washington, DC, 2021) 19-40.
- Kwak YS, Richmond AD, Deng Y, Forbes JM, Kim KH, Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field, J. Geophys. Res. 114, A05304 (2009). https://doi:10.1029/2008JA013882
- Kwak YS, Richmond AD, Roble RG, Dependence of the high-latitude lower thermospheric momentum forcing on the interplanetary magnetic field, J. Geophys. Res. 112, A06316 (2007). https://doi.org/10.1029/2006JA012208
- Le Huy M, Amory-Mazaudier C, Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: "Ddyn.", J. Geophys. Res. Space Phys. 110, A10301 (2005). https://doi.org/10.1029/2004JA010578
- Lee DY, Lyons LR, Geosynchronous magnetic field response to solar wind dynamic pressure pulse, J. Geophys. Res. Space Phys. 109, A04201 (2004). https://doi.org/10.1029/2003JA010246
- Lee DY, Lyons LR, Reeves GD, Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms, J. Geophys. Res. Space Phys. 110, A09213 (2005). https://doi.org/10.1029/2005JA011089
- Lee WK, Kil HS, Choi BK, Hong JS, Jeong SH, et al., Ionospheric response to the May 2024 G5 geomagnetic storm over Korea, captured by the Korea Astronomy and Space Science Institute (KASI) near real-time ionospheric monitoring system, J. Space Technol. Appl. 4, 210-219 (2024). https://doi.org/10.52912/jsta.2024.4.3.210
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al., The Atmospheric imaging assembly (AIA) on the Solar dynamics observatory (SDO), Solar Phys. 275, 17-40 (2012). https://doi.org/10.1007/s11207-011-9776-8
- Liou K, Meng CI, Lui ATY, Newell PT, Wing S, Magnetic dipolarization with substorm expansion onset, J. Geophys. Res. Space Phys. 107, SMP 23-1-SMP 23-12 (2002). https://doi.org/10.1029/2001JA000179
- Lu G, Richmond AD, Luhr H, Paxton LJ, High-latitude energy input and its impact on the thermosphere, J. Geophys. Res. Space Phys. 121, 7108-7124 (2016). https://doi.org/10.1002/2015JA022294
- Matzka J, Stolle C, Yamazaki Y, Bronkalla O, Morschhauser A, The geomagnetic Kp index and derived indices of geomagnetic activity, Space Weather, 19, e2020SW002641 (2021). https://doi.org/10.1029/2020SW002641
- Miyoshi Y, Kataoka R, Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions, Geophys. Res. Lett. 32, L21105 (2005). https://doi.org/10.1029/2005GL024590
- Nam UW, Park WK, Youn S, Kwak J, Sohn J, et al., Initial results of low Earth orbit space radiation dosimeter on board the next generation small satellite-2, J. Astron. Space Sci. 41, 195-208 (2024). https://doi.org/10.5140/JASS.2024.41.3.195
- Nava B, Rodriguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orue Y, et al., Middle-and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm, J. Geophys. Res. Space Phys. 121, 3421-3438 (2016). https://doi.org/10.1002/2015JA022299
- Newell PT, Sotirelis T, Wing S, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. Space Phys. 114, A09207 (2009). https://doi.org/10.1029/2009JA014326
- Newell PT, Sotirelis T, Wing S, Seasonal variations in diffuse, monoenergetic, and broadband aurora. J. Geophys. Res. Space Phys. 115, A03216 (2010). https://doi.org/10.1029/2009JA014805
- Nishitani N, Ruohoniemi JM, Lester M, Baker JBH, Koustov AV, et al., Review of the accomplishments of mid-latitude super dual auroral radar network (SuperDARN) HF radars, Prog. Earth Planet. Sci. 6, 1-57 (2019). https://doi.org/10.1186/s40645-019-0270-5
- Odstrcil D, Modeling 3-D solar wind structure, Adv. Space Res. 32, 497-506 (2003). https://doi.org/10.1016/S0273-1177(03)00332-6
- Odstrcil D, Riley P, Zhao XP, Numerical simulation of the 12 May 1997 interplanetary CME event, J. Geophys. Res. 109, A02116 (2004). https://doi.org/10.1029/2003JA010135
- Oh D, Kim J, Lee H, Jang KI, Satellite-based in-situ monitoring of space weather: KSEM mission and data application, J. Astron. Space Sci. 35, 175-183 (2018). https://doi.org/10.5140/JASS.2018.35.3.175
- Pesnell WD, Thompson BJ, Chamberlin PC, The Solar Dynamics Observatory (SDO), Solar Phys. 275, 3-15 (2012). https://doi.org/10.1007/s11207-011-9841-3
- Reinisch BW, Galkin IA, Global Ionospheric Radio Observatory (GIRO), Earth, Planets Space. 63, 377-381 (2011). https://doi.org/10.5047/eps.2011.03.001
- Richmond AD, Thayer JP, Ionospheric Electrodynamics: a tutorial. In Magnetospheric Current Systems, Geophysical Monograph Series, eds. Ohtani SI, Fujii R, Hesse M, Lysak RL (American Geophysical Union, Washington, DC, 2000) 1-63.
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al., The helioseismic and magnetic Imager (HMI) Investigation for the solar dynamics observatory (SDO), Solar Phys. 275, 207-227 (2012). https://doi.org/10.1007/s11207-011-9834-2
- Scolini C, Chane E, Temmer M, Kilpua E, Dissauer K, et al., CME-CME interactions as sources of CME geoeffectiveness: the formation of the complex ejecta and intense geomagnetic storm in 2017 early September, strophys. J. Suppl. Ser. 247, 21, (2020). https://doi.org/10.3847/1538-4365/ab6216
- Seemala GK, Chapter 4 - Estimation of Ionospheric Total Electron Content (TEC) from GNSS Observations. In Atmospheric Remote Sensing, eds. Kumar Singh A, Tiwari S (Elsevier, Amsterdam, 2023) 63-84.
- Shinbori A, Otsuka Y, Sori T, Tsugawa T, Nishioka M, Statistical behavior of large-scale ionospheric disturbances from high latitudes to mid-latitudes during geomagnetic storms using 20-yr GNSS-TEC data: dependence on season and storm intensity, J. Geophys. Res. Space Phys. 127, e2021JA029687 (2022). https://doi.org/10.1029/2021JA029687
- Shue JH, Song P, Russell CT, Steinberg JT, Chao JK, et al., Magnetopause location under extreme solar wind conditions, J. Geophys. Res. Space Phys. 103, 17691-17700 (1998). https://doi.org/10.1029/98JA01103
- Simpson JA, Cosmic-radiation neutron intensity monitor, Ann. Int. Geophys. Year, 4, 351-373 (1957). https://doi.org/10.1016/B978-1-4832-1304-0.50020-8
- Siscoe GL, Crooker NU, Siebert KD, Transpolar potential saturation: roles of region 1 current system and solar wind ram pressure. J. Geophys. Res. Space Phys. 107, SMP 21-1-SMP 21-8 (2002). https://doi.org/10.1029/2001JA009176
- Vankadara RK, Panda SK, Amory-Mazaudier C, Fleury R, Devanaboyina VR, et al., Signatures of equatorial plasma bubbles and ionospheric scintillations from magnetometer and GNSS observations in the Indian longitudes during the space weather events of early September 2017, Remote Sens. 14, 652 (2022). https://doi.org/10.3390/rs14030652
- Weimer DR, A flexible, IMF dependent model of high-latitude electric potentials having "Space Weather" applications. J. Geophys. Res. Space Phys. 101, 18861-18872 (1996). https://doi.org/10.1029/96GL02255
- World Data Center for Geomagnetism, Geomagnetic AE index (2015) [Internet], viewed 2024 Aug 12, available from: https://doi.org/10.17593/15031-54800
- World Data Center for Geomagnetism, Mid-latitude geomagnetic indices ASY and SYM (ASY/SYM indices) (2022) [Internet], viewed 2024 Aug 12, available from: https://doi.org/10.14989/267216
- Zhang Y, Paxton LJ, An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Sol. Terres. Phys. 70 1231-1242 (2008). https://doi.org/10.1016/j.jastp.2008.03.008
- Zhang Y, Paxton LJ, Schaefer R, Swartz WH, Thermospheric conditions associated with the loss of 40 Starlink satellites. Space Weather. 20, 10, e2022SW003168 (2022). https://doi.org/10.1029/2022SW003168