DOI QR코드

DOI QR Code

Observational Overview of the May 2024 G5-Level Geomagnetic Storm: From Solar Eruptions to Terrestrial Consequences

  • Young-Sil Kwak (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jeong-Heon Kim (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Sujin Kim (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Yukinaga Miyashita (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Taeyong Yang (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Sung-Hong Park (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Eun-Kyung Lim (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jongil Jung (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Hosik Kam (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jaewook Lee (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Hwanhee Lee (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Ji-Hyun Yoo (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Haein Lee (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Ryun-Young Kwon (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jungjoon Seough (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Uk-Won Nam (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Woo Kyoung Lee (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Junseok Hong (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jongdae Sohn (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jaeyoung Kwak (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Hannah Kwak (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Rok-Soon Kim (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Yeon-Han Kim (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Kyung-Suk Cho (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jaeheung Park (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Jaejin Lee (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Hoang Ngoc Huy Nguyen (Division of Space Science, Korea Astronomy and Space Science Institute) ;
  • Madeeha Talha (Division of Space Science, Korea Astronomy and Space Science Institute)
  • Received : 2024.08.15
  • Accepted : 2024.08.30
  • Published : 2024.09.15

Abstract

This study reports comprehensive observations for the G5-level geomagnetic storm that occurred from May 10 to 12, 2024, the most intense event since the 2003 Halloween storm. The storm was triggered by a series of coronal mass ejections (CMEs) originating from the merging of two active regions 13664/13668, which formed a large and complex photospheric magnetic configuration and produced X-class flares in early May 2024. Among the events, the most significant CME, driven by an X2.2 flare on May 9, caught up with and merged with a preceding slower CME associated with an X-class flare on May 8. These combined CMEs reached 1 AU simultaneously, resulting in an extreme geomagnetic storm. Geostationary satellite observations revealed changes in Earth's magnetosphere due to solar wind impacts, increased fluxes of high-energy particles, and periodic magnetic field fluctuations accompanied by particle injections. Extreme geomagnetic storms resulting from the interaction of the solar wind with the Earth's magnetosphere caused significant energy influx into Earth's upper atmosphere over the polar regions, leading to thermospheric heating and changes in the global atmospheric composition and ionosphere. As part of this global disturbance, significant disruptions were also observed in the East Asian sector, including the Korean Peninsula. Ground-based observations show strong negative storm effects in the ionosphere, which are associated with thermospheric heating and resulting in decreases in the oxygen-to-nitrogen ratio (O/N2) in high-latitude regions. Global responses of storm-time prompt penetration electric fields were also observed from magnetometers over the East-Asian longitudinal sector. We also briefly report storm-time responses of aurora and cosmic rays using all-sky cameras and neutron monitors operated by the Korea Astronomy and Space Science Institute (KASI). The extensive observations of the G5-level storm offer crucial insights into Sun-Earth interactions during extreme space weather events and may help establish better preparation for future space weather challenges.

Keywords

Acknowledgement

This research was supported by basic research funding from the Korea Astronomy and Space Science Institute (KASI) (KASI2024185002). J. Kim acknowledges support from the National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. NRF-2022R1C1C2009591). The OMNI solar wind data were provided by NASA CDAWeb (https://cdaweb.gsfc.nasa.gov/pub/data/omni/omni_cdaweb/hro_1min/). The Sym-H and AU/AL indices were provided by World Data Center for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html). The GOES 16 and 18 MAG and SEISS data were provided by National Centers for Environmental Information, National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/products/space-weather/satellites). The GK2A KSEM MG and PD data were provided by National Meteorological Satellite Center, Korea Meteorological Administration (https://datasvc.nmsc.kma.go.kr/datasvc/html/data/listData.do). We thank AE stations (Abisko [SGU, Sweden], Dixon Island, Cape Chelyuskin, Tixie Bay, Pebek [AARI, Russia], Barrow, College [USGS, USA], Yellowknife, Fort Churchill, Sanikiluaq (Poste-de-la-Baleine) [GSC, Canada], Narsarsuaq [DTU Space, Denmark], and Leirvogur [U. Iceland, Iceland]) as well as the RapidMAG team (NiCT, JHU/APL, UoA, AARI, and IDG) for their cooperation and efforts in operating these stations and providing data for the provisional AE index. We would like to extend our gratitude to the GFZ German Research Centre for Geosciences for providing the essential geomagnetic data used in this research. Their contributions were invaluable in the calculation and analysis of the Kp index (https://kp.gfz-potsdam.de/en/). The authors acknowledge the SSUSI and GUVI teams of JHU/APL for their efforts in producing and maintaining the data products used in this study. We also appreciate the use of SuperDARN data, which is funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, United Kingdom, and the United States of America. We acknowledge the use of ionosonde data from the Icheon and Jeju sites provided by the SAO-X database server linked to the GIRO network (Reinisch & Galkin, 2011). Additionally, we appreciate the data from the Wakkanai and Yamagawa sites downloaded from the NICT website. The GNSS RINEX data and navigation files were obtained from the NASA CDDIS, and the DCB files for TEC calculation were sourced from the AIUB FTP server. Furthermore, we acknowledge the SuperMAG network for providing magnetometer data.

References

  1. Arge CN, Luhmann JG, Odstrcil D, Schrijver CJ, Li Y, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys. 66, 1295-1309 (2004). https://doi.org/10.1016/j.jastp.2004.03.018
  2. Arge CN, Pizzo VJ, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res. 105, 10465-10480 (2000). https://doi.org/10.1029/1999JA000262
  3. Axford WI, Hines CO, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Can. J. Phys. 39, 1433-1464 (1961). https://doi.org/10.1139/p61-172
  4. Birn J, Hesse M, Energy release and conversion by reconnection in the magnetotail. Ann. Geophys. 23, 3365-3373 (2005). https://doi.org/10.5194/angeo-23-3365-2005
  5. Birn J, Thomsen MF, Borovsky JE, Reeves GD, McComas DJ, et al., Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit, J. Geophys. Res. Space Phys. 102, 2309-2324 (1997). https://doi.org/10.1029/96JA02870
  6. Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. The large angle spectroscopic coronagraph (LASCO), Sol. Phys. 162, 357-402 (1995). https://doi.org/10.1007/BF00733434
  7. Chisham G, Lester M, Milan SE, Freeman MP, Bristow WA, et al., A decade of the super dual auroral radar network (SuperDARN): scientific achievements, new techniques and future directions, Surv. Geophys. 28, 33-109 (2007). https://doi.org/10.1007/s10712-007-9017-8
  8. Chung JK, Wu Q, Kim YH, Won YI, Solomon S, et al., Enhancement of OI 630.0 nm emission at mid-latitudes during an intense magnetic storm, J. Atmos. Sol. Terr. Phys. 69, 697-706 (2007). https://doi.org/10.1016/j.jastp.2007.01.010
  9. Cid C, Cremades H, Aran A, Mandrini C, Sanahuja B. et al., Can a halo CME from the limb be geoeffective? J. Geophys. Res. 117, A11102 (2012). https://doi.org/10.1029/2012JA017536
  10. Dang T, Li X, Luo B, Li R, Zhang B, et al., Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022, Space Weather, 20, e2022SW003152 (2022). https://doi.org/10.1029/2022SW003152
  11. Deng Y, Ridley AJ, Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution and vertical velocity, J. Geophys. Res. Space Phys. 112, A09308 (2007). https://doi.org/10.1029/2006JA012006
  12. Domingo V, Fleck B, Poland AI, The SOHO mission: an overview, Sol. Phys. 162, 1-37 (1995). https://doi.org/10.1007/BF00733425
  13. Dungey JW, Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett. 6, 47-48 (1961). https://doi.org/10.1103/PhysRevLett.6.47
  14. Fang TW, Kubaryk A, Goldstein D, Li Z, Fuller-Rowell T, et al., Space weather environment during the SpaceX Starlink satellite loss in February 2022, Space Weather, 20, e2022SW003193 (2022). https://doi.org/10.1029/2022SW003193
  15. Fuller-Rowell TJ, Rees D, A three-dimensional time-dependent global model of the thermosphere, J. Atmos. Sci. 37, 2545-2567 (1980). https://doi.org/10.1175/1520-0469(1980)037<2545:ATDTDG>2.0.CO;2
  16. Gjerloev JW, A global ground-based magnetometer initiative, Eos, Trans. Am. Geophys. Union. 90, 230-231 (2009). https://doi.org/10.1029/2009EO270002
  17. Gjerloev JW, The SuperMAG data processing technique, J. Geophys. Res. Space Phys. 117, A09213 (2012). https://doi.org/10.1029/2012JA017683
  18. Gonzalez WD, Echer E, A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms, Geophys. Res. Lett. 32, L18103 (2005). https://doi.org/10.1029/2005GL023486
  19. Gosling JT, Bame SJ, McComas DJ, Phillips JL, Coronal mass ejections and large geomagnetic storms, Geophys. Res. Lett. 17, 901-904, (1990) https://doi.org/10.1029/GL017i007p00901
  20. Greenwald RA, Baker KB, Dudeney JR, Pinnock M, Jones TB, et al., DARN/SuperDARN, Space Sci. Rev. 71, 761-796 (1995). https://doi.org/10.1007/BF00751350
  21. Henderson MG, Skoug R, Donovan E, Thomsen MF, Reeves GD, et al., Substorms during the 10-11 August 2000 sawtooth event, J. Geophys. Res. Space Phys. 111, A06206 (2006). https://doi.org/10.1029/2005JA011366
  22. Imtiaz N, Dugassa T, Calabia A, Anoruo C, Kashcheyev A, Westward PPEF plays important role in the suppression of post-midnight plasma irregularities: a case study of the November 2021 geomagnetic storm, J. Geophys. Res. Space Phys. 129, e2023JA032367 (2024). https://doi.org/10.1029/2023JA032367
  23. Jung J, Oh S, Yi Y, Evenson P, Pyle R, et al., Installation of neutron monitor at the Jang Bogo station in Antarctica, J. Astron. Space Sci. 33, 345-348 (2016). https://doi.org/10.5140/JASS.2016.33.4.345
  24. Kang J, Jang DY, Kim Y, Kang BH, Kim YK, et al., Characteristics of the 18-tube NM64-type Daejeon neutron monitor in Korea, J. Korean Phys. Soc. 61, 720-729 (2012). https://doi.org/10.3938/jkps.61.720
  25. Kim J, Kwak YS, Lee C, Lee J, Kam H, et al., Observational evidence of thermospheric wind and composition changes and the resulting ionospheric disturbances in the European sector during extreme geomagnetic storms, J. Space Weather Space Clim. 13, 24 (2023). https://doi.org/10.1051/swsc/2023025
  26. Kim JH, Kwak YS, Validating the IRI-2020 model for ionospheric storms over the North-east Asian sector induced by extreme geomagnetic storms, Adv. Space Res. (2024). https://doi.org/10.1016/j.asr.2024.07.032
  27. King JH, Papitashvili NE, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data, J. Geophys. Res. Space Phys. 110, A02104 (2005). https://doi.org/10.1029/2004JA010649
  28. Kokubun S, Characteristics of storm sudden commencement at geostationary orbit, J. Geophys. Res. Space Phys. 88, 10025-10033 (1983). https://doi.org/10.1029/JA088iA12p10025
  29. Kwak YS, Richmond AD, An analysis of the momentum forcing in the high-latitude lower thermosphere, J. Geophys. Res. 112, A01306 (2007). https://doi:10.1029/2006JA011910
  30. Kwak YS, Richmond AD, Momentum and energy budgets in the high-latitude lower thermospheric wind system. in Geophysical Monograph 261, eds. Wang W, Zhang Y (American Geophysical Union, Washington, DC, 2021) 19-40.
  31. Kwak YS, Richmond AD, Deng Y, Forbes JM, Kim KH, Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field, J. Geophys. Res. 114, A05304 (2009). https://doi:10.1029/2008JA013882
  32. Kwak YS, Richmond AD, Roble RG, Dependence of the high-latitude lower thermospheric momentum forcing on the interplanetary magnetic field, J. Geophys. Res. 112, A06316 (2007). https://doi.org/10.1029/2006JA012208
  33. Le Huy M, Amory-Mazaudier C, Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: "Ddyn.", J. Geophys. Res. Space Phys. 110, A10301 (2005). https://doi.org/10.1029/2004JA010578
  34. Lee DY, Lyons LR, Geosynchronous magnetic field response to solar wind dynamic pressure pulse, J. Geophys. Res. Space Phys. 109, A04201 (2004). https://doi.org/10.1029/2003JA010246
  35. Lee DY, Lyons LR, Reeves GD, Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms, J. Geophys. Res. Space Phys. 110, A09213 (2005). https://doi.org/10.1029/2005JA011089
  36. Lee WK, Kil HS, Choi BK, Hong JS, Jeong SH, et al., Ionospheric response to the May 2024 G5 geomagnetic storm over Korea, captured by the Korea Astronomy and Space Science Institute (KASI) near real-time ionospheric monitoring system, J. Space Technol. Appl. 4, 210-219 (2024). https://doi.org/10.52912/jsta.2024.4.3.210
  37. Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al., The Atmospheric imaging assembly (AIA) on the Solar dynamics observatory (SDO), Solar Phys. 275, 17-40 (2012). https://doi.org/10.1007/s11207-011-9776-8
  38. Liou K, Meng CI, Lui ATY, Newell PT, Wing S, Magnetic dipolarization with substorm expansion onset, J. Geophys. Res. Space Phys. 107, SMP 23-1-SMP 23-12 (2002). https://doi.org/10.1029/2001JA000179
  39. Lu G, Richmond AD, Luhr H, Paxton LJ, High-latitude energy input and its impact on the thermosphere, J. Geophys. Res. Space Phys. 121, 7108-7124 (2016). https://doi.org/10.1002/2015JA022294
  40. Matzka J, Stolle C, Yamazaki Y, Bronkalla O, Morschhauser A, The geomagnetic Kp index and derived indices of geomagnetic activity, Space Weather, 19, e2020SW002641 (2021). https://doi.org/10.1029/2020SW002641
  41. Miyoshi Y, Kataoka R, Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions, Geophys. Res. Lett. 32, L21105 (2005). https://doi.org/10.1029/2005GL024590
  42. Nam UW, Park WK, Youn S, Kwak J, Sohn J, et al., Initial results of low Earth orbit space radiation dosimeter on board the next generation small satellite-2, J. Astron. Space Sci. 41, 195-208 (2024). https://doi.org/10.5140/JASS.2024.41.3.195
  43. Nava B, Rodriguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orue Y, et al., Middle-and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm, J. Geophys. Res. Space Phys. 121, 3421-3438 (2016). https://doi.org/10.1002/2015JA022299
  44. Newell PT, Sotirelis T, Wing S, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. Space Phys. 114, A09207 (2009). https://doi.org/10.1029/2009JA014326
  45. Newell PT, Sotirelis T, Wing S, Seasonal variations in diffuse, monoenergetic, and broadband aurora. J. Geophys. Res. Space Phys. 115, A03216 (2010). https://doi.org/10.1029/2009JA014805
  46. Nishitani N, Ruohoniemi JM, Lester M, Baker JBH, Koustov AV, et al., Review of the accomplishments of mid-latitude super dual auroral radar network (SuperDARN) HF radars, Prog. Earth Planet. Sci. 6, 1-57 (2019). https://doi.org/10.1186/s40645-019-0270-5
  47. Odstrcil D, Modeling 3-D solar wind structure, Adv. Space Res. 32, 497-506 (2003). https://doi.org/10.1016/S0273-1177(03)00332-6
  48. Odstrcil D, Riley P, Zhao XP, Numerical simulation of the 12 May 1997 interplanetary CME event, J. Geophys. Res. 109, A02116 (2004). https://doi.org/10.1029/2003JA010135
  49. Oh D, Kim J, Lee H, Jang KI, Satellite-based in-situ monitoring of space weather: KSEM mission and data application, J. Astron. Space Sci. 35, 175-183 (2018). https://doi.org/10.5140/JASS.2018.35.3.175
  50. Pesnell WD, Thompson BJ, Chamberlin PC, The Solar Dynamics Observatory (SDO), Solar Phys. 275, 3-15 (2012). https://doi.org/10.1007/s11207-011-9841-3
  51. Reinisch BW, Galkin IA, Global Ionospheric Radio Observatory (GIRO), Earth, Planets Space. 63, 377-381 (2011). https://doi.org/10.5047/eps.2011.03.001
  52. Richmond AD, Thayer JP, Ionospheric Electrodynamics: a tutorial. In Magnetospheric Current Systems, Geophysical Monograph Series, eds. Ohtani SI, Fujii R, Hesse M, Lysak RL (American Geophysical Union, Washington, DC, 2000) 1-63.
  53. Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al., The helioseismic and magnetic Imager (HMI) Investigation for the solar dynamics observatory (SDO), Solar Phys. 275, 207-227 (2012). https://doi.org/10.1007/s11207-011-9834-2
  54. Scolini C, Chane E, Temmer M, Kilpua E, Dissauer K, et al., CME-CME interactions as sources of CME geoeffectiveness: the formation of the complex ejecta and intense geomagnetic storm in 2017 early September, strophys. J. Suppl. Ser. 247, 21, (2020). https://doi.org/10.3847/1538-4365/ab6216
  55. Seemala GK, Chapter 4 - Estimation of Ionospheric Total Electron Content (TEC) from GNSS Observations. In Atmospheric Remote Sensing, eds. Kumar Singh A, Tiwari S (Elsevier, Amsterdam, 2023) 63-84.
  56. Shinbori A, Otsuka Y, Sori T, Tsugawa T, Nishioka M, Statistical behavior of large-scale ionospheric disturbances from high latitudes to mid-latitudes during geomagnetic storms using 20-yr GNSS-TEC data: dependence on season and storm intensity, J. Geophys. Res. Space Phys. 127, e2021JA029687 (2022). https://doi.org/10.1029/2021JA029687
  57. Shue JH, Song P, Russell CT, Steinberg JT, Chao JK, et al., Magnetopause location under extreme solar wind conditions, J. Geophys. Res. Space Phys. 103, 17691-17700 (1998). https://doi.org/10.1029/98JA01103
  58. Simpson JA, Cosmic-radiation neutron intensity monitor, Ann. Int. Geophys. Year, 4, 351-373 (1957). https://doi.org/10.1016/B978-1-4832-1304-0.50020-8
  59. Siscoe GL, Crooker NU, Siebert KD, Transpolar potential saturation: roles of region 1 current system and solar wind ram pressure. J. Geophys. Res. Space Phys. 107, SMP 21-1-SMP 21-8 (2002). https://doi.org/10.1029/2001JA009176
  60. Vankadara RK, Panda SK, Amory-Mazaudier C, Fleury R, Devanaboyina VR, et al., Signatures of equatorial plasma bubbles and ionospheric scintillations from magnetometer and GNSS observations in the Indian longitudes during the space weather events of early September 2017, Remote Sens. 14, 652 (2022). https://doi.org/10.3390/rs14030652
  61. Weimer DR, A flexible, IMF dependent model of high-latitude electric potentials having "Space Weather" applications. J. Geophys. Res. Space Phys. 101, 18861-18872 (1996). https://doi.org/10.1029/96GL02255
  62. World Data Center for Geomagnetism, Geomagnetic AE index (2015) [Internet], viewed 2024 Aug 12, available from: https://doi.org/10.17593/15031-54800
  63. World Data Center for Geomagnetism, Mid-latitude geomagnetic indices ASY and SYM (ASY/SYM indices) (2022) [Internet], viewed 2024 Aug 12, available from: https://doi.org/10.14989/267216
  64. Zhang Y, Paxton LJ, An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Sol. Terres. Phys. 70 1231-1242 (2008). https://doi.org/10.1016/j.jastp.2008.03.008
  65. Zhang Y, Paxton LJ, Schaefer R, Swartz WH, Thermospheric conditions associated with the loss of 40 Starlink satellites. Space Weather. 20, 10, e2022SW003168 (2022). https://doi.org/10.1029/2022SW003168