Acknowledgement
이 연구는 기상청 국립기상과학원 「수요자 맞춤형 기상정보 산출기술 개발 연구」 (KMA2018-00622)의 지원으로 수행되었습니다.
References
- UAM Team Korea, "K-UAM roadmap", Ministry of Land, Infrastructure, and Transport, 2020.
- UAM Team Korea, "K-UAM technology roadmap", Ministry of Land, Infrastructure, and Transport, 2021.
- UAM Team Korea, "Operational plan for the Korean urban air mobility (K-UAM) grand challenge", Ministry of Land, Infrastructure, and Transport (http://www.molit.go.kr), 2021.
- \McKercher, Richard G., et al., "Modelling and control of an urban air mobility vehicle subject to empirically-developed urban airflow disturbances", Aerospace, 11(3), 2024, pp.220.
- Archdeacon, J. L., and Iwai, N., "Aerospace cognitive engineering laboratory (ACELAB) simulator for urban air mobility (UAM) research and development", In AIAA Aviation 2020 Forum, 2020, pp.3187.
- Al Labbad, M., Wall, A., Larose, G. L., Khouli, F., and Barber, H., "Experimental investigations into the effect of urban airflow characteristics on urban air mobility applications", Journal of Wind Engineering and Industrial Aerodynamics, 2022, pp.229.
- Schweiger, K., Schmitz, R., and Knabe, F., "Impact of wind on eVTOL operations and implications for vertiport airside traffic flows: A case study of hamburg and munich", Drones, 7(7), 2023, pp.464.
- Mohamed, A., Marino, M., Watkins, S., Jaworski, J., and Jones, A., "Gusts encountered by flying vehicles in proximity to buildings", Drones, 7(1), 2023, pp.22.
- Bauranov, A., and Rakas, J., "Designing airspace for urban air mobility: A review of concepts and approaches", Progress in Aerospace ScieEnces, 125, 2021, pp.100726.
- Won, W. S, Kim, Y. M., "Weather barriers of urban air mobility (UAM) operations: A case study of the visibility and wind shear around Han-river corridor", Atmosphere. Korean Meteorological Society, 33(4), 2023, pp.413-422.
- Kang, Y. J., Choi, H. W., Choi, Y. N., Lee, S. S., Hwang, H. W., Lee, H. J., and Lee, Y. H., "Performance evaluation and improvement of operational aviation turbulence prediction model for middle- and upper- levels", Journal of the Korean Society for Aviation and Aeronautics, 31(3), 2023, pp.30-41.
- ICAO, "Meteorological service for international air navigation, 17th edition", ICAO: Montreal, CA, Canada, 2010, pp.206.
- Kolmogorov, A. N., "Energy dissipation in locally isotropic turbulence", Dokl. Akad. Nauk. SSSR. 32, 1941.
- Bodini, N., Lundquist, J. K., and Newsom, R. K., "Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign", Atmospheric Measurement Techniques, 11(7), 2018, pp.4291-4308.
- Taylor, G. I., "Statistical theory of turbulence, in: Proceedings of the Royal Society of London A: Mathematical", Physical and Engineering Sciences, 1935, pp.421-444.
- Welch, P., "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust, 15, 1967, pp.70-73.
- Kim, J., Kim, J. H., and Sharman, R. D., "Characteristics of energy dissipation rate observed from the high-frequency sonic anemometer at Boseong, South Korea", Atmosphere, 12(7), 2021, pp.837.
- ICAO, "Meeting of the meteorology panel (METP) working group MOG", Internatioanal Civil Aviation Organization(https://www.icao. int), 2017, pp.1-17.