DOI QR코드

DOI QR Code

Analysis of Turbulence at the K-UAM Grand Challenge Site in Goheung

고흥 K-UAM 그랜드 챌린지 실증지역에서의 난류 분석

  • Min-seong Kim ;
  • Hee-Wook Choi ;
  • Seong-hwa Park ;
  • Geun-Hoi Kim ;
  • Sang-Sam Lee ;
  • Yong Hee Lee
  • 김민성 (국립과학기상원 기상응용연구부) ;
  • 최희욱 (국립과학기상원 기상응용연구부) ;
  • 박성화 (국립과학기상원 기상응용연구부) ;
  • 김근회 (국립과학기상원 기상응용연구부) ;
  • 이상삼 (국립과학기상원 기상응용연구부) ;
  • 이용희 (수치모델링센터 수치자료응용과)
  • Received : 2024.08.14
  • Accepted : 2024.08.28
  • Published : 2024.09.30

Abstract

Recently, urban population congestion has caused significant traffic and air pollution problems in city centers. To address these issues, Urban Air Mobility (UAM) has been proposed, with commercialization targeted for 2025 in Korea. The Korea Meteorological Administration (KMA) has been conducting the K-UAM Grand Challenge in Goheung since 2022 to develop operational standards and relevant technologies. This study uses a ultrasonic anemometer at a height of 10 meters to analyze turbulence around the vertiport. Data was collected from November 2022 to November 2023. For turbulence analysis, the Eddy Dissipation Rate (EDR = ε1/3), defined by the International Civil Aviation Organization (ICAO), was used. EDR was calculated using Kolmogorov's theory and derived from the energy spectrum. EDR values were classified into None, Light, Moderate, and Severe, and analyzed by season, day, and wind direction. The results showed strong daytime turbulence in summer, especially with southerly winds in spring and summer, due to sea breeze fronts. This study provides essential data for planning safe UAM operations considering weather conditions.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「수요자 맞춤형 기상정보 산출기술 개발 연구」 (KMA2018-00622)의 지원으로 수행되었습니다.

References

  1. UAM Team Korea, "K-UAM roadmap", Ministry of Land, Infrastructure, and Transport, 2020.
  2. UAM Team Korea, "K-UAM technology roadmap", Ministry of Land, Infrastructure, and Transport, 2021.
  3. UAM Team Korea, "Operational plan for the Korean urban air mobility (K-UAM) grand challenge", Ministry of Land, Infrastructure, and Transport (http://www.molit.go.kr), 2021.
  4. \McKercher, Richard G., et al., "Modelling and control of an urban air mobility vehicle subject to empirically-developed urban airflow disturbances", Aerospace, 11(3), 2024, pp.220.
  5. Archdeacon, J. L., and Iwai, N., "Aerospace cognitive engineering laboratory (ACELAB) simulator for urban air mobility (UAM) research and development", In AIAA Aviation 2020 Forum, 2020, pp.3187.
  6. Al Labbad, M., Wall, A., Larose, G. L., Khouli, F., and Barber, H., "Experimental investigations into the effect of urban airflow characteristics on urban air mobility applications", Journal of Wind Engineering and Industrial Aerodynamics, 2022, pp.229.
  7. Schweiger, K., Schmitz, R., and Knabe, F., "Impact of wind on eVTOL operations and implications for vertiport airside traffic flows: A case study of hamburg and munich", Drones, 7(7), 2023, pp.464.
  8. Mohamed, A., Marino, M., Watkins, S., Jaworski, J., and Jones, A., "Gusts encountered by flying vehicles in proximity to buildings", Drones, 7(1), 2023, pp.22.
  9. Bauranov, A., and Rakas, J., "Designing airspace for urban air mobility: A review of concepts and approaches", Progress in Aerospace ScieEnces, 125, 2021, pp.100726.
  10. Won, W. S, Kim, Y. M., "Weather barriers of urban air mobility (UAM) operations: A case study of the visibility and wind shear around Han-river corridor", Atmosphere. Korean Meteorological Society, 33(4), 2023, pp.413-422.
  11. Kang, Y. J., Choi, H. W., Choi, Y. N., Lee, S. S., Hwang, H. W., Lee, H. J., and Lee, Y. H., "Performance evaluation and improvement of operational aviation turbulence prediction model for middle- and upper- levels", Journal of the Korean Society for Aviation and Aeronautics, 31(3), 2023, pp.30-41.
  12. ICAO, "Meteorological service for international air navigation, 17th edition", ICAO: Montreal, CA, Canada, 2010, pp.206.
  13. Kolmogorov, A. N., "Energy dissipation in locally isotropic turbulence", Dokl. Akad. Nauk. SSSR. 32, 1941.
  14. Bodini, N., Lundquist, J. K., and Newsom, R. K., "Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign", Atmospheric Measurement Techniques, 11(7), 2018, pp.4291-4308.
  15. Taylor, G. I., "Statistical theory of turbulence, in: Proceedings of the Royal Society of London A: Mathematical", Physical and Engineering Sciences, 1935, pp.421-444.
  16. Welch, P., "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust, 15, 1967, pp.70-73.
  17. Kim, J., Kim, J. H., and Sharman, R. D., "Characteristics of energy dissipation rate observed from the high-frequency sonic anemometer at Boseong, South Korea", Atmosphere, 12(7), 2021, pp.837.
  18. ICAO, "Meeting of the meteorology panel (METP) working group MOG", Internatioanal Civil Aviation Organization(https://www.icao. int), 2017, pp.1-17.