DOI QR코드

DOI QR Code

가중 방향성 네트워크에서 삼각매개중심성의 측정 방법

Triangle Betweenness Centrality in Weighted Directed Networks

  • 이재윤 (명지대학교 문헌정보학과)
  • Jae Yun Lee
  • 투고 : 2024.08.29
  • 심사 : 2024.09.17
  • 발행 : 2024.09.30

초록

이 연구에서는 도서관 상호대차나 물류교통 네트워크처럼 링크에 방향성과 가중치 정보가 모두 포함되는 네트워크를 분석하기 위해서 방향성 네트워크에 적용할 수 있는 새로운 전역중심성 지수를 개발하고자 하였다. 이런 경우 기존에는 가중 페이지랭크가 주로 사용되어왔지만 실험 데이터에 대해 적용해본 결과 가중 페이지랭크는 지역중심성을 측정하는 이웃중심성과 유사한 결과를 보였다. 가중 네트워크를 위한 전역중심성 지수인 삼각매개중심성은 링크의 방향을 고려하지 못하는 한계가 있다. 따라서 기존의 삼각매개중심성 지수를 변형하여 신뢰 네트워크에 적용할 수 있는 삼각매개중심성-T(TBC-T)와 흐름 네트워크에 적용할 수 있는 삼각매개중심성-F(TBC-F)를 개발하였다. 도서관 상호대차 네트워크 두 가지를 대상으로 지수 산출 실험을 수행해본 결과, TBC-T 지수는 내향 링크의 가중치만 반영하고 TBC-F 지수는 내향 링크와 외향 링크의 가중치를 모두 반영하는 특성을 확인할 수 있었다. 새로 개발된 TBC-T와 TBC-F는 가중 방향성 네트워크에서 노드의 전역중심성을 측정하기 위한 지수로 유용하게 활용될 것으로 기대된다.

This study aims to develop novel centrality measures applicable to networks that include both directional and weighted information, such as interlibrary loan networks and logistics transportation networks. While weighted PageRank has traditionally been used in such cases, experimental results reveal that it yields similar outcomes to neighborhood centrality, which measures local centrality. However, triangle betweenness centrality (TBC), despite assessing global centrality in weighted networks, does not consider link directions. To address these limitations, we propose two modified versions of the existing TBC measure: TBC-T for trust networks and TBC-F for flow networks. Applying these measures to two interlibrary loan networks, we find that TBC-T considers only the weights of inlinks, while TBC-F incorporates both inlink and outlink weights. These newly developed measures are expected to be useful for measuring node global centrality in weighted directed networks.

키워드

과제정보

이 논문은 2023년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2023S1A5A2A03085177).

참고문헌

  1. Cho, Jang Sik (2012). Inflow and outflow analysis of double majors using social network analysis. Journal of the Korean Data & Information Science Society, 23(4), 693-701. http://doi.org/10.7465/jkdi.2012.23..4.693
  2. Choi, Sanghee (2023). An analysis on topics of digital curation researches using the co-word analysis. The Journal of Humanities, 44(1), 149-175. http://doi.org/10.22947/ihmju.2023.44.1.006
  3. Choi, Seungbae, Kang, Changwan, Choi, Hyongjun, & Kang, Byungyuk (2011). Social network analysis for a soccer game. Journal of the Korean Data & Information Science Society, 22(6), 1053-1063.
  4. Choi, Wonsil & Chung, Eunkyung (2019). An analysis on collection profiles of western monographs with ILL data for academic libraries. Journal of the Korean Society for Information Management, 36(3), 109-129. http://doi.org/10.3743/KOSIM.2019.36.3.109
  5. Choi, Ye Jin, Kim, Chohae, & Lee, Jee Yeon (2023). Trend analysis of foreign academic libraries' development plan. Journal of the Korean Society for Information Management, 40(3), 163-196. http://doi.org/10.3743/KOSIM.2023.40.3.163
  6. Chung, EunKyung (2021). An investigation on the network analysis papers by content analysis and bibliometric analysis. Journal of the Korean Society for Information Management, 38(1), 169-190. http://doi.org/10.3743/KOSIM.2021.38.1.169
  7. Chung, Jun-Min (2010). The study on the genealogy and impact factor of papers by citation analysis. Journal of the Korean Library and Information Science Society, 44(2), 357-379. http://doi.org/10.4275/KSLIS.2010.44.2.357
  8. Han, Jihye, Kim, Kabsung, & Jung, Hayoung (2016). Analysis on the inter-industry network between the service industry in the Korean capital region and 10 industrial sectors in 20 city-regions of China-Japan-Korea. Journal of the Korean Regional Science Association, 32(4), 51-73.
  9. Lee, HyeKyung & Lee, Yong-Gu (2023). Intellectual structure analysis on the field of open data using co-word analysis. Journal of the Korean Society for Information Management, 40(4), 429-450. http://doi.org/10.3743/KOSIM.2023.40.4.429
  10. Lee, Jae Yun & Chung, Eunkyung (2022). Introducing keyword bibliographic coupling analysis (KBCA) for identifying the intellectual structure. Journal of the Korean Society for Information Management, 39(1), 309-330. http://doi.org/10.3743/KOSIM.2022.39.1.309
  11. Lee, Jae Yun (2006a). Centrality measures for bibliometric network analysis. Journal of the Korean Library and Information Science Society, 40(3), 191-214. http://doi.org/10.4275/KSLIS.2006.40.3.191
  12. Lee, Jae Yun (2006b). A study on the network generation methods for examining the intellectual structure of knowledge domains. Journal of the Korean Library and Information Science Society, 40(2), 333-355. http://doi.org/10.4275/KSLIS.2006.40.2.333
  13. Lee, Jae Yun (2011a). A study on document citation indicators based on citation network analysis. Journal of the Korean Library and Information Science Society, 45(2), 119-143. http://doi.org/10.4275/KSLIS.2011.45.2.119
  14. Lee, Jae Yun (2011b). Journal PageRank calculation in the Korean Science Citation Database. Journal of the Korean Biblia Society for Library and Information Science, 22(4), 361-379.
  15. Lee, Jae Yun (2013). A comparison study on the weighted network centrality measures of tnet and WNET. Journal of the Korean Society for Information Management, 30(4), 241-264. https://doi.org/10.3743/KOSIM.2013.30.4.241
  16. Lee, Jae Yun (2014). A comparative study on the centrality measures for analyzing research collaboration networks. Journal of the Korean Society for Information Management, 31(3), 153-179. http://doi.org/10.3743/KOSIM.2014.31.3.153
  17. Lee, Jae Yun (2015). A generalized measure for local centralities in weighted networks. Journal of the Korean Society for Information Management, 32(2), 7-23. http://doi.org/10.3743/KOSIM.2015.32.2.007
  18. Leem, Byung-Hak (2011). Impacts of container port network on productivity: based on social network analysis perspective. Korean Journal of Logistics, 19(3), 19-35. http://doi.org/10.15735/kls.2011.19.3.002
  19. Oh, HyounJeong & Yi, Chan-Goo (2021). The structure of interdisciplinarity in the science and technology policy studies in Korea from the perspective of respective researcher's disciplinary background. Journal of Korea Technology Innovation Society, 24(1), 41-74. http://doi.org/10.35978/jktis.2021.2.24.1.41
  20. Park, Chisung, Oh, Jae Rok, & Nam, Ju Hyun (2011). An empirical study of national government reorganization: A focus on changes in the network structures of formal document exchanges between the roh and lee administrations. Journal of Public Administration, 49(4), 51-82.
  21. Park, Young Ae & Lee, Jae Yun (2010). A study on user-oriented evaluation of book collections under a regional library system. Journal of the Korean Library and Information Science Society, 44(4), 457-477. http://doi.org/10.4275/KSLIS.2010.44.4.457
  22. Ryoo, Jong-duk (2013). An analysis on interlibrary loan network of public libraries in Gyeonggi Province. Journal of the Korean Society for Information Management, 30(2), 83-99. http://doi.org/10.3743/KOSIM.2013.30.2.083
  23. Son, Yoo-Mi & Kim, Hwa Young (2023). A study on the analysis of effect on port logistics network due to COVID-19 pandemic. Journal of Korean Port Economic Association, 39(4), 205-222. http://doi.org/10.15735/kls.2014.22.4.001
  24. Yook, Ji-Hye, Lee, Go-Eun, & Park, Ji-Hong (2015). An investigation of the cooperative relationships in the ILL services of academic libraries by applying the collaboration index: focusing on the S University Library in Korea. Journal of Korean Library and Information Science Society, 46(4), 493-510. http://doi.org/10.16981/kliss.46.4.201512.493
  25. Yu, So-Young & Lee, Jae Yun (2008). Journal citation analysis for library services on interdisciplinary domains: a case study of department of biotechnology, Y University. Journal of the Korean Society for Information Management, 25(4), 283-308. http://doi.org/10.3743/KOSIM.2008.25.4.283
  26. Ahuja, R. K. (1993). Network Flows: Theory, Algorithms, and Applications. Englewood Cliffs, New Jersey: Prentice Hall.
  27. Chung, H. M., Kwon, O. K., Han, O. S., & Kim, H. (2020). Evolving network characteristics of the Asian international aviation market: a weighted network approach. Transport Policy, 99, 299-313. https://doi.org/10.1016/j.tranpol.2020.09.002
  28. Klavans, R. & Boyack, K. W. (2006). Identifying a better measure of relatedness for mapping science. Journal of the American Society for Information Science and Technology, 57(2), 149-295. https://doi.org/10.1002/asi.20274open_in_new
  29. Lee, J. Y. & Choi, S. (2013). Collaboration networks and document networks in informetrics research from 2001 to 2011: finding influential nations, institutions, documents. Journal of the Korean Society for Information Management, 30(1), 179-191. http://doi.org/10.3743/KOSIM.2013.30.1.179
  30. Opsahl, T. (2010). Node centrality in weighted networks: generalizing degree and shortest paths. Social Networks, 32(3), 245-251. https://doi.org/10.1016/j.socnet.2010.03.006
  31. Park, E. (2022). The changing intellectual structures of HRD in South Korea: author profiling analysis. Asia Pacific Education Review, 23(1), 169-183. http://doi.org/10.1007/s12564-021-09720-x
  32. Qi, Q. & Kwon, O. K. (2021). Exploring the characteristics of high-speed rail and air transportation networks in China: a weighted network approach. Journal of International Logistics and Trade, 19(2), 96-114. http://doi.org/10.24006/jilt.2021.19.2.096
  33. Quirin, A., Cordon, O., Guerrero-Bote, V. P., Vargas-Quesada, B., & Moya-Anegon, F. (2008). A quick MST-based algorithm to obtain Pathfinder networks (∞, n - 1). Journal of the American Society for Information Science and Technology, 59(12), 1912-1924. https://doi.org/10.1002/asi.20904
  34. Xing, W. & Ghorbani, A. (2004). Weighted pagerank algorithm. Proceedings of the Second Annual Conference on Communication Networks and Services Research (CNSR'04), 305-314. https://doi.org/10.1109/DNSR.2004.1344743
  35. Yuan, W., Guan, D., Lee, Y. K., & Lee, S. (2011). The small-world trust network. Applied Intelligence, 35(5), 399-410. https://doi.org/10.1007/s10489-010-0230-7
  36. Zhang, G. Q. & He, Y. Q. (2013). Trust-based recommender algorithm using the properties of trust network. Proceedings of the International Conference on Education Reform and Management Innovation (ERMI 2012), 5, 104-110.
  37. Zhang, L., Glanzel, W., & Liang, L. (2009). Tracing the role of individual journals in a cross-citation network based on different indicators. Scientometrics, 81(3), 821-838. https://doi.org/10.1007/s11192-008-2245-y