과제정보
이 논문은 2023학년도 국립부경대학교 산학협력단의 지원을 받아 수행된 연구임(202311680001).
참고문헌
- S.R.Gwon, E.S.Oh, J.M.Oh, T.K.Kim, "A Study on Real-Time Public Transportation Information," Korea Multimedia Society Spring Conference, Vol.26, No.1, pp.107-108, 2023.
- Arduino[Internet], https://www.arduino.cc.
- MIT App Inventor[Internet], https://appinventor.mit.edu.
- B.J.Lee, J.K.Kim, K.S.Kim, S.H.Oh, "Stated Preference Analysis of the Impacts of Bus Crowdedness Information on Bus Choice," Journal of Korean Society of Transportation, Vol.26, No.6, pp.61-70, 2008.
- Y.R.Jeong, S.H.Bae, "Estimation of Bus Passenger Occupancy and Degree of Congestion by Using Bus Card Data in Busan," Journal of Transport Research, Vol.22, No.3, pp.13-24, 2015.
- Y.J.Jin, Y.M.Kim, D.H.Lee, S.H.Bae, "CCTV video data to estimate the number of people in the bus and determine the congestion level," Journal of Korean Society of Transportation, No.78, pp.297-302, 2018.
- J.H.Lim, S.S.Park, S.B.Go, J.T.Kim, D.H.Kim, "Bus Seat Availability Prediction System based on Time Series Forecasting," Journal of KIISE(Korean Institute of Information Scientists and Engineers), pp.1873-1875, 2017.
- W.S.Choi, J.H.Jo, W.C.Park, S.H.Choi, "Design of YOLO-NAS Model for Safety Helmet Detection in Embedded Systems," Journal of the Korea Contents Association, Vol.24, No.3 pp.14-24, 2024.
- M.H.Park, J.H.Choi, W.J.Lee, "Object detection for various types of vessels using the YOLO algorithm", Journal of the Korean Society of Marine Engineering, Vol.48, No.2 pp.81-88, 2024.
- H.D.Lee, S.G.Kim, S.C.Na, J.Y.Ham, C.H.Kwak, "A Study on the Detection of Traffic Disadvantaged Persons Using Ensemble YOLOv5 Model," Journal of the Korea Computer Information Society, Vol.29, No.1, pp.61-68, 2024.
- D.W.Kim, J.H.Lee, "Automated Banner Crackdown System Using YOLO and OpenCV Technology," Journal of the Society of Semiconductor and Display Technology, Vol.22, No.4, pp.48-52, 2023.
- S.W.Lee, K.H.Yoo, Y.K.Kang, J.M.Kim, C.S.Lee, "A Study on Strawberry Harvesting Robot System Using YOLO-based Object Recognition," Journal of the Korean Society of Manufacturing Engineering, Vol.32, No.2, pp.101-108, 2023.
- Data Portal[Internet], https://www.data.go.kr.
- YOLOv5, YOLOv5 by Ultralytics[Internet], https://github.com/ultralytics/yolov5.
- J.H.Moon, B.Peng, J.H.Kwon, T.K.Kim, "Implementation of Smart Umbrella Stand Based on IoT," Journal of Internet of Things and Convergence, Vol.9, No.1, pp.57-64, 2023.
- S.B.Park, Y.J.Jeong, D.E.Lee, T.K.Kim, "A Study on the Elevator System Using Real-time Object Detection Technology YOLOv5," Journal of Internet of Things and Convergence, Vol.10, No.2, pp.103-108, 2024.
- T.K.Kim, "Spatial Crowdedness Measurement System using IoT and Amazon Web Services," Journal of Internet of Things and Convergence, Vol.9, No.4, pp.15-20, 2023.
- R.B.Girshick, J.Donahue, T.Darrell, J.Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proceedings of the IEEE conference on computer vision and pattern recognition, pp.580-587, 2014.
- R.B.Girshick, "Fast R-CNN," Proceedings of the IEEE international conference on computer vision, pp.1440-1448.
- S.Ren, K.He, R.B.Girshick, J.Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," Advances in neural information processing systems, 2015.