DOI QR코드

DOI QR Code

A lab-scale screw conveyor system for EPB shield TBM: system development and applicability assessment

토압식 쉴드 TBM 스크류 컨베이어 축소 모형 시험 장비: 장비 개발과 적용성 평가

  • Suhyeong Lee (Dept. of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hangseok Choi (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kibeom Kwon (Dept. of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Dongjoon Lee (Overseas Civil Engineering Team, Daewoo E&C) ;
  • Byeonghyun Hwang (Dept. of Civil, Environmental and Architectural Engineering, Korea University)
  • 이수형 (고려대학교 건축사회환경공학과) ;
  • 최항석 (고려대학교 건축사회환경공학부) ;
  • 권기범 (고려대학교 건축사회환경공학과) ;
  • 이동준 (대우건설 토목해외기술팀) ;
  • 황병현 (고려대학교 건축사회환경공학과)
  • Received : 2024.08.16
  • Accepted : 2024.09.19
  • Published : 2024.09.30

Abstract

Soil conditioning is a critical process when tunneling with an earth pressure balance (EPB) shield tunnel boring machine (TBM) to enhance performance. To determine the optimal additive injection conditions, it is important to understand the rheological properties of conditioned soil, which is typically assessed using a rheometer. However, a rheometer cannot simulate the actual process of muck discharge in a TBM. Therefore, in this study, a scaled-down model of an 8-meter-class EPB shield TBM chamber and screw conveyor, reduced by a factor of 1:20, was fabricated and its applicability was evaluated through laboratory experiments. A lab-scale model experiment was conducted on artificial sandy soil using foam and polymer as additives. The experimental results confirmed that screw torque was consistent with trends observed in previous laboratory pressurized vane shear test data, establishing a positive proportional relationship between screw torque and yield stress. The muck discharge efficiency according to foam injection ratio (FIR) showed similar values overall, but decreased slightly at 60% of FIR and when the polymer was added. In addition, the pressure distribution generated along the chamber and screw conveyor was assessed in a manner similar to the actual EPB TBM. This study demonstrates that the lab-scale screw conveyor model can be used to evaluate the shear properties and muck discharge efficiency.

일반적으로 토압식(earth pressure balance) 쉴드 TBM (tunnel boring machine)으로 지반 굴착 시 쏘일 컨디셔닝(soil conditioning)을 수행하여 굴착 효율성을 높이고 안정성을 도모한다. 지반 여건에 따른 최적의 첨가제 주입 조건을 결정하기 위해 컨디셔닝된 흙의 유동학적 특성을 정량적으로 파악하는 것이 중요하며, 이는 주로 유동계(rheometer)를 활용하여 이루어진다. 그러나 이는 실제 TBM에서 굴착토가 배토되는 과정을 모사할 수 없어 장비에 미치는 영향을 파악하는데 한계가 있다. 따라서 본 연구에서는 8 m급 토압식 쉴드 TBM의 챔버와 스크류 컨베이어(screw conveyor)를 1:20으로 축소시킨 모형 장비를 개발하여 실제 배토 과정을 모사하였다. 이를 위해 인공 사질토 시료를 대상으로 첨가제로 폼과 폴리머를 사용하여 축소모형시험을 수행하였다. 실험 결과, 스크류 토크는 기존에 수행한 실내 가압 베인전단시험 결과 데이터와 연계하여 항복응력과의 경향성이 일관되는 것을 확인하였으며, 스크류 토크와 항복응력 사이의 양의 비례관계를 도출하였다. 폼 주입비(foam injection ratio, FIR)에 따른 배토 효율은 전반적으로 유사한 경향을 보였으나 60% 일 때 미소하게 감소하였으며 폴리머를 첨가하면 효율이 떨어지는 것을 확인하였다. 또한 실제 토압식 쉴드 TBM과 동일하게 챔버 상, 하부에서 압력차가 발생하는 것과 스크류 컨베이어 케이싱을 따라 배토구로 갈수록 압력이 점진적으로 소산되는 과정을 확인하였다. 따라서 본 연구에서 제작한 축소모형시험 장비가 굴착토의 전단특성 및 배토 효율 평가에 활용될 수 있음을 보여준다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 지원(RS-2024-00410248)으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Bezuijen, A., Schaminee, P.E.L. (2001), "Simulation of the EPB-shield TBM in model tests with foam as additive", Proceedings of the Congress on Modern Tunnelling Science and Technology, Balkema, pp. 935-940.
  2. Chang, S.H. (2015), "A consideration for mechanical rock excavation focusing on TBM and roadheader", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 52, No. 5, pp. 531-548. https://doi.org/10.12972/ksmer.2015.52.5.531
  3. EFNARC (2005), Specification and guidelines for the use of specialist products for mechanised tunnelling (TBM) in soft ground and hard rock, European Federation of National Associations Representing for Concrete, pp. 1-45.
  4. Feng, Q.L. (2004), "Soil conditioning for modern EPBM drives", Tunnels & Tunnelling International, Vol. 36, No. 12, pp. 18-20.
  5. Galli, M., Thewes, M. (2014), "Investigations for the application of EPB shields in difficult grounds / Untersuchungen fur den Einsatz von Erddruckschilden in schwierigem Baugrund", Geomechanics and Tunnelling, Vol. 7, No. 1, pp. 31-44. https://doi.org/10.1002/geot.201310030
  6. Gharahbagh, E.A., Rostami, J., Talebi, K. (2014), "Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines", Tunnelling and Underground Space Technology, Vol. 41, pp. 127-136. https://doi.org/10.1016/j.tust.2013.12.003
  7. Hu, W., Rostami, J. (2020), "A new method to quantify rheology of conditioned soil for application in EPB TBM tunneling", Tunnelling and Underground Space Technology, Vol. 96, 103192.
  8. Hwang, B., Kang, M., Kwon, K., Yang, J., Choi, H. (2023), "Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer", Journal of Korean Tunnelling and Underground Space Association, Vol. 25, No. 5, pp. 387-401. https://doi.org/10.9711/KTAJ.2023.25.5.387
  9. Jung, H.S., Choi, J.M., Chun, B.S., Park, J.S., Lee, Y.J. (2011), "Causes of reduction in shield TBM performance - A case study in Seoul", Tunnelling and Underground Space Technology, Vol. 26, No. 3, pp. 453-461. https://doi.org/10.1016/j.tust.2011.01.001
  10. Kim, S.H., Kim, J.D., Park, I.J. (2011), "An experimental study on screw conveyor system of EPB shield TBM", Journal of Korean Tunnelling and Underground Space Association, Vol. 13, No. 6, pp. 519-530. https://doi.org/10.9711/KTAJ.2011.13.6.519
  11. Kwak, J. (2023), Rheological properties of excavated soils for EPB shield TBM with additives injection conditions, Master Thesis, Korea University, pp. 1-124.
  12. Kwon, K., Choi, H., Oh, J.Y., Kim, D. (2022), "A study on EPB shield TBM face pressure prediction using machine learning algorithms", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 2, pp. 217-230. https://doi.org/10.9711/KTAJ.2022.24.2.217
  13. Langmaack, L. (2000), "Advanced technology of soil conditioning in EPB shield tunnelling", Proceedings of the North American Tunneling, Vol. 2000, Boston, pp. 525-542.
  14. Lee, D. (2023), Discharge efficiency of excavated soils by EPB TBM screw conveyor lab-scale test, Master Thesis, Korea University, pp. 1-107.
  15. Lee, H., Kwak, J., Choi, J., Hwang, B., Choi, H. (2022), "A lab-scale experimental approach to evaluate rheological properties of foam-conditioned soil for EPB shield tunnelling", Tunnelling and Underground Space Technology, Vol. 128, 104667.
  16. Lee, I.M. (2016), Geotechnical Principles of Tunnels, CIR, Seoul, pp. 170.
  17. Maidl, U. (1995), Erweiterung der Einsatzbereiche der Erddruckschilde durch bodenkonditionierung mit Schaum, Ph.D. Thesis, Institut fur Konstruktiven Ingenieurbau, Ruhr-Universitat Bochum, pp. 1-184.
  18. Merritt, A.S. (2004). Conditioning of clay soils for tunnelling machine screw conveyors, Ph.D. Thesis, University of Cambridge, pp. 1-292.
  19. Merritt, A.S., Mair, R.J. (2006), "Mechanics of tunnelling machine screw conveyors: model tests", Geotechnique, Vol. 56, No. 9, pp. 605-615. https://doi.org/10.1680/geot.2006.56.9.605
  20. Merritt, A.S., Mair, R.J. (2008), "Mechanics of tunnelling machine screw conveyors: a theoretical model", Geotechnique, Vol. 58, No. 2, pp. 79-94. https://doi.org/10.1680/geot.2008.58.2.79
  21. Mosavat, K. (2015), Examination of excavation chamber pressure behavior on a 17.5 m diameter earth pressure balance tunnel boring machine, Master Thesis, Colorado School of Mines, pp. 1-156.
  22. Oh, T.S., Kim, S.H., Kim, W.K., Lee, H.Y., Shin, M.H. (2014), "Model test on operation efficiency in the screw conveyor of shiled TBM in soft ground", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 203-211. https://doi.org/10.9711/KTAJ.2014.16.2.203
  23. Park, B., Choi, S.W., Lee, C., Kang, T.H., Chang, S.H. (2019), "Evaluation of screw conveyor model performance depending on the inclined angle by discrete element method", Tunnel and Underground Space, Vol. 29, No. 6, pp. 379-393. https://doi.org/10.7474/TUS.2019.29.6.379
  24. Peila, D., Oggeri, C., Vinai, R. (2007), "Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12, pp. 1622-1625. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1622)
  25. Song, T.T., Zhou, S.H. (2008), "Study on the earth pressure distribution of excavation chamber in EPB tunneling", Proceedings of the 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, pp. 343-348.
  26. Talmon, A.M., Bezuijen, A. (2002), "Muck discharge by the screw conveyor of an EPB tunnel boring machine", Proceedings of the Conference on Geotechnical Aspects of Underground Construction in Soft Ground, Toulouse, Vol. 1, pp. 173-178.
  27. Toth, A., Gong, Q., Zhao, J. (2013), "Case studies of TBM tunneling performance in rock-soil interface mixed ground", Tunnelling and Underground Space Technology, Vol. 38, pp. 140-150. https://doi.org/10.1016/j.tust.2013.06.001
  28. Zumsteg, R., Puzrin, A.M. (2012), "Stickiness and adhesion of conditioned clay pastes", Tunnelling and Underground Space Technology, Vol. 31, pp. 86-96. https://doi.org/10.1016/j.tust.2012.04.010