DOI QR코드

DOI QR Code

A Study for Analyzing the Mechanism of Enhanced Cementitious Reactivity of Bottom Ash by Using Functional Grinding Agent

기능성 분쇄조제를 통한 건조저회의 시멘트 반응성 메커니즘 분석 연구

  • Ahyeon Lim (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Hyunuk Kang (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Juhyuk Moon (Department of Civil and Environmental Engineering, Seoul National University)
  • 임아현 (서울대학교 건설환경공학부) ;
  • 강현욱 (서울대학교 건설환경공학부) ;
  • 문주혁 (서울대학교 건설환경공학부)
  • Received : 2024.07.13
  • Accepted : 2024.09.02
  • Published : 2024.09.30

Abstract

In this study, commercially available chemical activator was utilized as a grin din g agen t for bottom ash to develop bottom ash blended cement. The hydration characteristics of the bottom ash blended cement were analyzed using X-ray diffraction and thermogravimetric analysis. In particular, the PONKCS method was employed to quantify the amorphous C-S-H and bottom ash. The use of chemical activator delayed the hydration reaction of the cement and reduced the reactivity of the bottom ash. However, appropriate delay of hydration and enhanced reaction of aluminate successfully led to the formation of a substantial amount of monocarboaluminate. Consequently, the use of chemical activator greatly improved the compressive strength of the bottom ash blended cement, resulting in the 20240713development of high-performance bottom ash blended cement.

본 연구에서는 상용화된 화학적 활성화제를 바텀애시의 분쇄조제로 활용하여 바텀애시 치환 시멘트를 개발하였다. X-선 회절분석과 열중량분석법을 사용하여 바텀애시 치환 시멘트의 수화 특성을 분석하였으며, 특히 PONKCS 방법을 활용하여 비정질인 C-S-H와 바텀애시를 정량화하였다. 분쇄조제 형태로 첨가된 화학적 활성화제에 의해 시멘트의 수화 반응이 지연되었을 뿐만 아니라 바텀애시의 반응성도 감소하였다. 그러나 적절한 수화 지연 현상과 알루미네이트 반응 촉진 효과로 인해 상당량의 헤미카르보알루미네이트 및 모노카르보알루미네이트가 생성되었다. 이에 따라 궁극적으로 바텀애시 치환 시멘트의 압축강도가 크게 향상되어 적정기술로서 바텀애시의 재활용에 기여할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국중부발전 현장기술개발 사업(과제명: 바텀애시 분쇄촉매화를 통한 기존 플라이애시 동등 성능 이상의 SCM 개발 실증)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

References

  1. Alahrache, S., Winnefeld, F., Champenois, J.B., Hesselbarth, F., Lothenbach, B. (2016). Chemical activation of hybrid binders based on siliceous fly ash and Portland cement, Cement and Concrete Composites, 66, 10-23.
  2. Alyaseen, A., Poddar, A., Alahmad, H., Kumar, N., Sihag, P. (2023). High-performance self-compacting concrete with recycled coarse aggregate: comprehensive systematic review on mix design parameters, Journal of Structural Integrity and Maintenance, 8(3), 161-178.
  3. Antoni, M., Rossen, J., Martirena, F., Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone, Cement and Concrete Research, 42(12), 1579-1589.
  4. Badkul, A., Paswan, R., Singh, S.K., Tegar, J.P. (2022). A comprehensive study on the performance of alkali activated fly ash/GGBFS geopolymer concrete pavement, Road Materials and Pavement Design, 23(8), 1815-1835.
  5. Cao, Z., Shen, L., Zhao, J., Liu, L., Zhong, S., Yang, Y. (2016). Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement, Resources, Conservation and Recycling, 113, 116-126.
  6. Carsana, M., Gastaldi, M., Lollini, F., Redaelli, E., Bertolini, L. (2016). Improving durability of reinforced concrete structures by recycling wet-ground MSWI bottom ash, Materials and Corrosion, 67(6), 573-582.
  7. Das, D., Rout, P.K. (2023). A review of coal fly ash utilization to save the environment, Water, Air, & Soil Pollution, 234(2), 128.
  8. Deboucha, W., Leklou, N., Khelidj, A., Oudjit, M.N. (2017). Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration, Construction and Building Materials, 146, 687-701.
  9. Ferg, E.E., Simpson, B. (2013). Using PXRD and PONKCS to determine the kinetics of crystallisation of highly concentrated NH4NO3 emulsions, Journal of Chemical Crystallography, 43(4), 197-206.
  10. Gagg, C.R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis, Engineering Failure Analysis, 40, 114-140.
  11. Hasanbeigi, A., Price, L., Lin, E. (2012). Emerging energyefficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review, Renewable and Sustainable Energy Reviews, 16(8), 6220-6238.
  12. Huang, H., Li, X., Avet, F., Hanpongpun, W., Scrivener, K. (2021). Strength-promoting mechanism of alkanolamines on limestone-calcined clay cement and the role of sulfate, Cement and Concrete Research, 147, 106527.
  13. Ipavec, A., Gabrovsek, R., Vuk, T., Kaucic, V., Macek, J., Meden, A. (2011). Carboaluminate phases formation during the hydration of calcite-containing Portland cement, Journal of the American Ceramic Society, 94(4), 1238-1242.
  14. Jeon, D., Jun, Y., Jeong, Y., Oh, J.E. (2015). Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system, Cement and Concrete Research, 67, 215-225.
  15. Kaja, A.M., Schollbach, K., Melzer, S., van der Laan, S.R., Brouwers, H.J.H., Yu, Q. (2021). Hydration of potassium citrate-activated BOF slag, Cement and Concrete Research, 140, 106291.
  16. Kang, H., Lee, N., Moon, J. (2020). Elucidation of the hydration reaction of UHPC using the PONKCS method, Materials, 13(20), 4661.
  17. Kang, H., Yang, J., Kim, S., Lim, A., Moon, J. (2024). Mechanochemical activation for transforming bottom ash to reactive supplementary cementitious material, Construction and Building Materials, 411, 134523.
  18. Kang, H., Lim, A., Moon, J. (2023). Utilization of low reactive bottom ash in cement formulation through Na2CO3 triggered pozzolanic reaction, Construction and Building Materials, 408, 133688.
  19. Kang, H., Moon, J. (2021). Secondary curing effect on the hydration of ultra-high performance concrete, Construction and Building Materials, 298, 123874.
  20. Li, X., Snellings, R., Scrivener, K.L. (2019). Quantification of amorphous siliceous fly ash in hydrated blended cement pastes by X-ray powder diffraction, Journal of Applied Crystallography, 52(6), 1358-1370.
  21. Maldonado-Alameda, A., Giro-Paloma, J., Rodriguez-Romero, A., Serret, J., Menargues, A., Andres, A., Chimenos, J.M. (2021). Environmental potential assessment of MSWI bottom ash-based alkali-activated binders, Journal of Hazardous Materials, 416, 125828.
  22. Moon, J., Oh, J.E., Balonis, M., Glasser, F.P., Clark, S.M. (2012). High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO·Al2O3·CaCO3·11H2O, Cement and Concrete Research, 42(1), 105-110.
  23. Paredes, J.A., Galvez, J.C., Enfedaque, A., Alberti, M.G. (2021). Matrix optimization of ultra high performance concrete for improving strength and durability, Materials, 14(22), 6944.
  24. Qi, X., Pei, P., Zhu, M., Du, X., Xin, C., Zhao, S., Li, X., Zhu, Y. (2017). Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo, Scientific Reports, 7(1), 42556.
  25. Rietveld, H.M. (1969). A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, 2(2), 65-71.
  26. Scrivener, K., Snellings, R., Lothenbach, B. (2018). A Practical Guide to Microstructural Analysis of Cementitious Materials, CRC Press.
  27. Snellings, R., Chwast, J., Cizer, O., De Belie, N., Dhandapani, Y., Durdzinski, P., Elsen, J., Haufe, J., Hooton, D., Patapy, C. (2018). Report of TC 238-SCM: Hydration stoppage methods for phase assemblage studies of blended cements-results of a round robin test, Materials and Structures, 51(4), 111.
  28. Varshney, A., Dahiya, P., Sharma, A., Pandey, R., Mohan, S. (2022). Fly ash application in soil for sustainable agriculture: an Indian overview, Energy, Ecology and Environment, 7(4), 340-357.
  29. Wu, H., Cai, J., Ren, Q., Xu, J., Chu, F., Lyu, Q. (2020). An efficient and economic denitration technology based on fuel pretreatment for cement cleaner production, Journal of Cleaner Production, 272, 122669.
  30. Xiang, J., Qiu, J., Li, Z., Chen, J., Song, Y. (2022). Eco-friendly treatment for MSWI bottom ash applied to supplementary cementing: mechanical properties and heavy metal leaching concentration evaluation, Construction and Building Materials, 327, 127012.
  31. Xu, L., Wang, J., Li, K., Hao, T., Li, Z., Li, L., Ran, B., Du, H. (2023). New insights on dehydration at elevated temperature and rehydration of GGBS blended cement, Cement and Concrete Composites, 139, 105068.
  32. Zhang, J., Scherer, G.W. (2011). Comparison of methods for arresting hydration of cement, Cement and Concrete Research, 41(10), 1024-1036.