DOI QR코드

DOI QR Code

순환유리 잔골재의 사용 조건이 모르타르의 역학적 특성 및 알칼리-실리카 반응에 미치는 영향

The Effect of Recycled Glass Sand Usage Conditions on the Mechanical Properties and Alkali-Silica Reaction of Mortar

  • 손민재 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 김규용 (충남대학교 건축공학과) ;
  • 최현상 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 최경철 (한국건설기술연구원 건축연구본부) ;
  • 송태협 (한국건설기술연구원 건축연구본부)
  • Min-Jae Son (Korea Institute of Civil Engineering and Building Technology) ;
  • Gyu-Yong Kim (Department of Architectural Engineering, Chungnam University) ;
  • Hyun-Sang Choi (Korea Institute of Civil Engineering and Building Technology) ;
  • Gyeong-Cheol Choi (Korea Institute of Civil Engineering and Building Technology) ;
  • Tae-Hyeob Song (Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2024.07.01
  • 심사 : 2024.07.24
  • 발행 : 2024.09.30

초록

최근 건설 및 생활폐기물 중에서 재활용되지 못하고 매립되는 폐유리가 증가함에 따라 이를 잔골재로써 재활용하기 위한 연구들이 진행되고 있다. 그러나 폐유리의 종류 및 순환유리 잔골재(RGS) 제조 방법에 따라 상반되는 연구 결과가 나타나 RGS의 활용을 촉진하는데 어려움을 겪고 있다. RGS의 활용을 촉진하기 위해서는 대량 생산 공정 또는 실제 콘크리트 적용 등 현장 조건에서의 검토가 필요하다. 이에 본 연구에서는 RGS의 대량 생산 공정 사례를 소개하고, 대량 생산된 RGS의 사용 조건(색상, 함량, 입자 크기)이 모르타르의 역학적 특성 및 알칼리-실리카 반응(ASR)에 미치는 영향에 대하여 평가하였다. 그 결과, RGS의 대량 생산 공정은 입자 내부에 미세균열을 유발하여 모르타르의 강도 저하 및 ASR 팽창의 주요 원인이 되었다. 이러한 미세균열은 투명한 RGS에 가장 많은 것으로 나타났다. 결과적으로, RGS의 사용 가능한 조건으로 함량 25 % 미만 또는 입자 크기 0.5 mm 미만의 천연 잔골재 대체를 제안하였다.

In recent years, there has been an increasing amount of waste glass that cannot be recycled and is landfilled among construction and household waste. To address this issue, research has been conducted to recycle waste glass as sand, but conflicting results have emerged depending on the type of waste glass and the manufacturing method of recycled glass sand(RGS). To promote the use of RGS, it is necessary to review its performance under field conditions, such as mass production processes and real scale concrete applications. This study introduces examples of mass production system process for RGS and evaluates the effects of the usage conditions(color, content, particle size) of mass-produced RGS on the mechanical properties and alkali-silica reaction(ASR) of mortar. As a result, the mass production system process of RGS causes microcracks inside the particles, which are the cause of mortar strength reduction and ASR expansion. The number of microcracks is highest in clear RGS. Based on these results, it is proposed that RGS can be used as a replacement for natural sand with a content of less than 25 % or a particle size of less than 0.5 mm.

키워드

과제정보

본 논문은 국토교통과학기술진흥원 건축물 안전해체 계획 및 시공 기술 개발(과제코드: RS-2023-00246154)의 지원에 의해 수행되었습니다. 이에 감사드립니다.

참고문헌

  1. Bhandari, P., Tajne, K.M. (2013). Use of waste glass in cement mortar, International Journal of Civil & Structural Engineering, 3(4), 704-711.
  2. Corinaldesi, V., Gnappi, G., Moriconi, G., Montenero, A.J.W.M. (2005). Reuse of ground waste glass as aggregate for mortars, Waste Management, 25(2), 197-201.
  3. Dadouch, M., Belal, T., Ghembaza, M.S. (2024). Valorization of glass waste as partial substitution of sand in concrete-Investigation of the physical and mechanical properties for a sustainable construction, Construction and Building Materials, 411, 134436.
  4. Degirmenci, N., Yilmaz, A., Cakir, O.A. (2011). Utilization of waste glass as sand replacement in cement mortar, Indian Journal of Engineering & Materials Sciences, 18, 303-308.
  5. Dhir, R.K., Dyer, T.D., Tang, M.C. (2009). Alkali-silica reaction in concrete containing glass, Materials and Structures, 42, 1451-1462.
  6. Du, H., Tan, K.H. (2013). Use of waste glass as sand in mortar: Part II-alkali-silica reaction and mitigation methods, Cement and Concrete Composites, 35(1), 118-126.
  7. Du, H., Tan, K.H. (2014). Effect of particle size on alkali-silica reaction in recycled glass mortars, Construction and Building Materials, 66, 275-285.
  8. Eronyan, M.A., Parfenov, P.S., Kulesh, A.Y., Meshkovskiy, I.K., Untilov, A.A. (2023). Cr2O3 doping effect on silica glass cooling rate, Silicon, 15(8), 3479-3483.
  9. Eu, H.M., Kim, G.Y., Choe, G.C., Son, M.J., Nam, J.S. (2020). Evaluation of mechanical properties and alkali-silica reaction of high strength mortar using waste glass sand, Journal of the Korean Recycled Construction Resources Institute, 8(4), 528-536 [in Korean].
  10. Harrison, E., Berenjian, A., Seifan, M. (2020). Recycling of waste glass as aggregate in cement-based materials, Environmental Science and Ecotechnology, 4, 100064.
  11. Kim, B.C., Cha, T.G., Jang, P.K., Kim, C.W., Jang, I.Y. (2015). An experimental study on high strength concrete using the LCD waste glass powder, Journal of the Korean Recycled Construction Resources Institute, 3(4), 335-341 [in Korean].
  12. Kim, H.M., Park, H., Choi, J.Y. (2021). A study on time series analysis of domestic waste landfill sites using geo information system, Journal of the Korean Recycled Construction Resources Institute, 9(3), 229-235 [in Korean].
  13. Lee, H., Kim, K., Lee, H. (2023). The process development of cullet and recycled glass aggregate for improving waste glass bottles recycling rate, Journal of Material Cycles and Waste Management, 25(6), 3217-3227.
  14. Li, X., Zang, X., Xing, X., Li, J., Ma, Y., Li, T. (2022). Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from secondary nickel slag, Metals, 12(1), 164.
  15. Ministry of Environment (2019). Development Status of Domestic and International Recycling Demand for Waste Glass Bottles.
  16. Park, J.S., Jang, K.P., Song, T.H. (2023). Economic feasibility assessment for the interior materials selective dismantling system promotion in buildings, Journal of the Korean Recycled Construction Resources Institute, 11(3), 251-259 [in Korean].
  17. Park, K.S., Kang, S.P. (2021). Engineering characteristics of recycled cold asphalt mixtures using waste glass and red mud, Journal of the Korean Recycled Construction Resources Institute, 9(1), 50-57 [in Korean].
  18. Park, S.B., Lee, B.C. (2004). Studies on expansion properties in mortar containing waste glass and fibers, Cement and Concrete Research, 34(7), 1145-1152.
  19. Penacho, P., de Brito, J., Veiga, M.R. (2014). Physico-mechanical and performance characterization of mortars incorporating fine glass waste aggregate, Cement and Concrete Composites, 50, 47-59.
  20. Rajabipour, F., Maraghechi, H., Fischer, G. (2010). Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials, Journal of Materials in Civil Engineering, 22(12), 1201-1208.
  21. Shi, C., Zheng, K. (2007). A review on the use of waste glasses in the production of cement and concrete, Resources, Conservation and Recycling, 52(2), 234-247.
  22. Tan, K.H., Du, H. (2013). Use of waste glass as sand in mortar: Part I-Fresh, mechanical and durability properties, Cement and Concrete Composites, 35(1), 109-117.
  23. Wang, T., San Nicolas, R., Kashani, A., Ngo, T. (2022). Sustainable utilisation of low-grade and contaminated waste glass fines as a partial sand replacement in structural concrete, Case Studies in Construction Materials, 16, e00794.
  24. Wang, T., San Nicolas, R., Nguyen, T.N., Kashani, A., Ngo, T. (2022). Mechanical behaviour of glass-mortar under uniaxial compression loading based on a meso-scale modelling approach, Construction and Building Materials, 359, 129499.
  25. Wang, T., San Nicolas, R., Nguyen, T.N., Kashani, A., Ngo, T. (2023). Experimental and numerical study of long-term alkali-silica reaction (ASR) expansion in mortar with recycled glass, Cement and Concrete Composites, 139, 105043.
  26. Zhu, H., Chen, W., Zhou, W., Byars, E.A. (2009). Expansion behaviour of glass aggregates in different testing for alkali-silica reactivity, Materials and Structures, 42, 485-494.